
Java 9: Exploring New
Features

Paul Webber
2017-04-18

Java 9 Feature Set

● JDK 9 JEPS

● JEP 222: jshell: The Java Shell (Read-Eval-Print Loop)

● JEP 269: Convenience Factory Methods for Collections

● JEP 277: Enhanced Deprecation

JDK Enhancement Proposals (JEPs) for JDK 9

Going Away

● 214: Remove Deprecated GC Combinations
● 231: Remove Launch-Time JRE Version Selection
● 240: Remove the JVM TI hprof Agent
● 241: Remove the jhat Tool
● 260: Encapsulate Most Internal APIs
● 289: Deprecate the Applet API
● 298: Remove Demos and Samples

Possible Unexpected Behaviour

● 158: Unified JVM Logging
● 223: New Version-String Scheme
● 245: Validate JVM Command-Line Flag Arguments
● 248: Make G1 the Default Garbage Collector
● 271: Unified GC Logging

What is JShell - JEP 222

JEP 222: jshell: The Java Shell (Read-Eval-Print Loop)

Owner: Robert Field

Goals:

The JShell API and tool will provide a way to interactively evaluate declarations,
statements, and expressions of the Java programming language within the JShell
state. The JShell state includes an evolving code and execution state. To facilitate
rapid investigation and coding, statements and expressions need not occur within a
method, expressions need not have side-effects, variables need not occur within a
class, and methods need not occur within a class or interface.

Most Recent Tutorial: http://cr.openjdk.java.net/~rfield/tutorial/JShellTutorial.html

http://cr.openjdk.java.net/~rfield/tutorial/JShellTutorial.html

What is JShell

● Tool providing a dynamic interaction with the Java™
programming language

● Read-Evaluate-Print Loop (REPL) for the Java™ platform

○ Type in a snippet of Java code, see the results

● Deeply integrated with JDK tool-set

○ Stays current and compatible

● Also, an API for use within other applications

JShell Command Line Parameters
Parameter Description

--class-path <path> Specify where to find user class files
--module-path <path> Specify where to find application modules
--add-modules
<module>(,<module>)*

Specify modules to resolve, or all modules on the module path if <module> is
ALL-MODULE-PATHs

--startup <file> One run replacement for the start-up definitions
--no-startup Do not run the start-up definitions

--feedback <mode>
Specify the initial feedback mode. The mode may be predefined (silent, concise, normal, or
verbose) or previously user-defined

-q Quiet feedback. Same as: --feedback concise
-s Really quiet feedback. Same as: --feedback silent
-v Verbose feedback. Same as: --feedback verbose
-J<flag> Pass <flag> directly to the runtime system. Use one -J for each runtime flag or flag argument
-R<flag> Pass <flag> to the remote runtime system. Use one -R for each remote flag or flag argument
-C<flag> Pass <flag> to the compiler. Use one -C for each compiler flag or flag argument
--version Print version information and exit
--show-version Print version information and continue
--help-extra, -X Print help on non-standard options and exit

JShell Commands - Operations
Command Description

/help [<command>|<subject>]
● intro
● shortcuts
● context

get information about jshell
List commands

/? [<command>|<subject>] same as /help

/exit exit jshell

/save [-all|-history|-start] <file> Save snippet source to a file

/open <file> open a file as source input

JShell Commands - Lists
Command Description

/history history of what you have typed

/list [<name or id>|-all|-start] list the source you have typed

/imports list the imported items

/vars [<name or id>|-all|-start] list the declared variables and their values

/methods [<name or id>|-all|-start] list the declared methods and their signatures

/types [<name or id>|-all|-start] list the declared types

/drop <name or id> delete a source entry referenced by name or id

/edit <name or id> edit a source entry referenced by name or id

JShell Commands - Environment
Command Description

/env [-class-path <path>] [-module-path <path>]
[-add-modules <modules>] …

view or change the evaluation context

/reset [-class-path <path>] [-module-path <path>]
[-add-modules <modules>]...

reset jshell

/reload [-restore] [-quiet] [-class-path <path>] [-module-path
<path>]...

reset and replay relevant history -- current or
previous (-restore)

/set editor|start|feedback|mode|prompt|truncation|format … set jshell configuration information

/! re-run last snippet

/<id> re-run snippet by id

/-<n> re-run n-th previous snippet

JShell - Key Commands
Key Action

Ctrl-r Search backward through history

Ctrl-s Search forward through history

Ctrl-x (Start entering macro

Ctrl-x) Finish macro

Ctrl-x e Use macro

Ctrl-k Kill (delete) the text from the cursor to the end of the line

Meta-d Kill from the cursor to the end of the word

Ctrl-w Kill from the cursor to the previous whitespace

Ctrl-y Yank (paste) the most recently killed text into the line

Meta-y After Ctrl-y, press to cycle through previously killed text

JShell - More Key Commands
Key Action

Return Enter the current line

Left-arrow Move backward one character

Right-arrow Move forward one character

Up-arrow Move up one line (backward through history)

Down-arrow Move down one line (forward through history)

Ctrl-a Move to the beginning of the line

Ctrl-e Move to the end of the line

Meta-b Move backward a word

Meta-f Move forward a word

Meta-y After Ctrl-y, press to cycle through previously killed text

JShell Scripts

Script Contents

DEFAULT The default startup if one is not set, includes commonly needed
import declarations

PRINTING Defines JShell methods that redirect to the print, println, and printf
methods in PrintStream

JAVASE Imports all Java SE packages, this is big and will cause a noticeable
startup delay

jshell> /open PRINTING

OR

Cmd: jshell --startup PRINTING

Testing Java Nuances

● Did you know that comparing autoboxed integers references which values are
from range -128 to 127 (inclusive) returns true (they are cached)?

Integer i1 = 127

Integer i2 = 127

i1 == i2

Integer i1 = 128

Integer i2 = 128

i1 == i2

Testing Java Nuances

● Don’t forget basic type limitations!

x = 123456

y = 123456

What Type does x*y return?

JEP 269 – Convenience Factory Methods for Collections

Owner: Stuart Marks

Goals:

● Provide static factory methods on the collection interfaces that will create
compact, unmodifiable collection instances. The API is deliberately kept
minimal.

JEP 269 - Examples

// Java 8

List<String> stringList = Arrays.asList("a", "b", "c");

Set<String> stringSet = new HashSet<>(Arrays.asList("a", "b", "c"));

Map<String,Integer> stringMap = new HashMap<>();

stringMap.put("a",1);

stringMap.put("b",2);

stringMap.put("c",3);

// Java 9

List<String> stringList = List.of("a", "b", "c");

Set<String> stringSet = Set.of("a", "b", "c");

Map<String,Integer> stringMap = Map.of("a", 1, "b", 2, "c", 3);

Map<String, String> tokens = Map. ofEntries(
 Map.entry("@", "AT"),
 Map.entry("|","VERTICAL_BAR"),
 Map.entry("#","HASH"),
 Map.entry("%","PERCENT"),
 Map.entry(":","COLON"),
 Map.entry("^","CARET"),
 Map.entry("&","AMPERSAND"),
 Map.entry("!","EXCLAM"),
 Map.entry("?","QUESTION"),
 Map.entry("$","DOLLAR"),
 Map.entry("::","PAAMAYIM_NEKUDOTAYIM"),
 Map.entry("=","EQUALS"),
 Map.entry(";","SEMICOLON")
);

JEP 269 - Map With Arbitrary Number of Pairs

JEP 277: Enhanced Deprecation

Owner: Stuart Marks

Goals:

● Provide better information about the status and intended disposition of APIs in
the specification.

● Provide a tool to analyze an application's static usage of deprecated APIs.

Deprecation Key Concepts

● Deprecation is

○ Notification to developers that they should migrate their code away from the
deprecated API

● Possible reasons

○ The deprecated API has something wrong with it

○ There’s a newer, better API that can be used instead

○ The deprecated API is going to be removed

History (1)

● Deprecation introduced in JDK 1.1 as a javadoc tag @deprecated
● Early on, massive wave of deprecations for widely varying reasons

○ dangerous APIs (Thread.destroy)
○ simple renames (AWT Component.show/hide => setVisible)
○ caused disruption, compiler warnings, fear, confusion
○ result: deprecations slowed drastically, no APIs removed

● Annotation @Deprecated introduced in Java 5
○ note capitalization
○ no change/clarification of semantics

History (2)

● Has anything ever been un-deprecated?
○ Yes! The System.getenv() API was in JDK 1.0
○ first sentence of its javadoc: “Obsolete.”
○ implementation: threw an exception unconditionally
○ officially deprecated in 1.1 (when deprecation was created)
○ fully implemented and un-deprecated in Java SE 5

● Has anything been newly introduced as deprecated?
○ Yes! Three overloads of javax.management.MBeanServer.deserialize()
○ introduced in Java SE 5, deprecated in Java SE 5!
○ JMX was a standalone JSR, with deprecated stuff, before integration into SE 5

History (3)

● Confusion continued through Java 8
○ “Don’t use deprecated APIs, since they might be removed”
○ “Sun/Oracle have never removed anything, and they never will”

● Wrong! Oracle will actually remove stuff in Java 9
○ java.util.logging.LogManager.add/removePropertyChangeListener
○ java.util.jar.Pack200.Packer/Unpacker.add/removePropertyChangeListener
○ main driver was modularity, to break dependencies on Java Beans, part of the java.desktop

module
○ also: java.awt.Component.getPeer() removed

■ flawed API, referred to types outside of Java SE, e.g., ComponentPeer

Java 9 Deprecations So Far: forRemoval=false

● Boxed primitive constructors: new Integer(), new Boolean(), etc.
○ use Integer.valueOf(), Boolean.valueOf(), etc.

● Java.applet
○ applets and browser plugins are (slowly) on their way out

● java.util.Observer/Observable
○ anybody ever use these?

Java 9 Deprecations So Far: forRemoval=true

● Thread.destroy()
● Thread.stop(Throwable)

○ no-arg Thread.stop() still deprecated, but not for removal

● System.runFinalizersOnExit(boolean)
○ JDK-4240589: if called with true, can cause unavoidable VM crash
○ Filed in 1999! The only fix is to remove it.

● Obsolete SecurityManager calls
○ inCheck, getInCheck(), currentClassLoader(), currentLoadedClass(), classDepth(),

classLoaderDepth(), inClass(), inClassLoader(), checkTopLevelWindow(), …
○ all vestiges of the old security model, superseded in Java 1.2

http://bugs.java.com/view_bug.do?bug_id=4240589
http://bugs.java.com/view_bug.do?bug_id=4240589

Static Analysis (jdeprscan)

● New tool introduced in Java 9
● Statically analyzes class files and jar files against Java SE APIs
● Looks for and reports usage of deprecated Java SE APIs

*API information for past releases is built into Java 9. No need to keep old versions of the JDK around.

Demo (Windows 7 compilation): javac -version javac 1.6.0_45

Any More Questions?

Thank you!

