Locke Labs

for the common defense

New Tools for STEM,
Cyber, and Makers

www.lockelabs.net




Locke Labs

for the common defense

Overview

* Motivation and Rationale

— Execute Java source code directly on hardware

— Concept inspired in part by modular features of Java 9
 Demo Configuration and Slides

— Embedded Hardware

— Host configuration
* (Caveats

— Proof of concept, necessary but not sufficient capabilities
 Memory access, memory allocation and constraints, process interrupts

— “Execution environment” is not a JVM
* Workflow and Package Structure

« Embedded Code Examples

— Java main, memory allocation, a SoC module, memory access,
interrupts

— Memory corruption due to stack or heap overflow is currently
prevented. Current heap protection approach is presented.

 Discussion



Locke Labs

for the common defense

Motivation and Rationale

* Currently we have large numbers of cyber vulnerabilities and
attacks

— At the same time, we have an increase in the number of people
interested in STEM, cyber technology, and makers interested in
electronics

e Suggesting that these 3 communities have a similar requirement

— How to more easily experiment with the interaction between hardware
and software

* This proof of concept demonstrates that the Java language and
pending changes (modularity) have several advantages over
traditional embedded programming (C and flavors of Unix)

— Reduce the attack surface by reducing the number of lines of code
executing

— Stronger typing

— More consistent memory constraints

— Per TIOBE, the most popular programming language

— Reduce the effort of setting up a cross-platform toolchain



Locke Labs

for the common defense

Demo Slides

 Demo Java application utilizes timers, interrupts, and General Purpose Input
Output to blink LEDs on a fixed frequency

e  Embedded Hardware

— Initially targeting a Beagle Bone Black board with a TI SoC (AM3358B) with an ARM Cortex-A8
MPU
— SoC includes:
e UART
* Dual Mode Timer
* Interrupt Controller
* General Purpose Input Output
* Power, Reset, and Clock Management
* Programmable Real-Time Unit and Industrial Communication Subsystem (dual 32-bit RISC cores)
* Enhanced Direct Memory Access
* 3-port gigabit ethernet switch
* Pulse Width Modulation Subsystem
* USB
* 12C
* Controller Area Network (CAN)
* Multichannel Serial Port Interface (McSPI)

* Host configuration
— 2010 MacBook Pro
— Version 4.0.2 of ‘screen’ terminal emulator
— USB to TTL Serial Cable and Drivers to BBB Console Serial UART



Locke Labs

for the common defense

18 April 2017

Start the runtime, then disable Timers

start- g
helle - int -> TIMER ->
TIMER

I *Runtime waits for ‘g’
MM command to run
*Hardcoded to start 2 sec
timer. Timer interrupt
service routine advances to
the next LED
*‘int” in output
denotes that INTC
generated the ARM
exception
*‘TIMER’ denotes that
the interrupt request
was generated by the
timer
*Timer Disable (‘t d’)
command stops the timer

New Tools for STEM, Cyber, and Makers 5



Locke Labs .
Interactively Turn a LED Off

for the common defense

console:tty@@vrootdevname=c060p1 verbos
## Starting application at Bx80200000 .

start- g
hello - int -= TIMER ->

int ~= TIMER -*>
int -» TIMER -=>
int. -» TIMER —>
t d int —> TIMER —=

hello -~
hello -

hello -

hello =~ 1.2\ ¢
hello - §

*On previous slide, a single LED was illuminated (LED 2)
*LED clear command (‘l 2 ¢’) writes 0 to the control bit, turning the LED off

18 April 2017 New Tools for STEM, Cyber, and Makers



Locke Labs

for the common defense

Interactively Turn a LED On

BT e s
t d int —-= TIMER ->
hello —

hello -

hello —

hello - 1 2 ¢

nello =11 4.5

hello - &

Locke Labs *LED set command

Tor the common defoR2e (145s") writesa 1
to the control bit,
turning the LED on.

*Now LED 4 is
illuminated.

18 April 2017 New Tools for STEM, Cyber, and Makers 7



Locke Labs

for the common defense

Simple Console Port Debugger

e Java code also implements a simple command
ine debugger that interactively provides
imited (only on NOP) breakpoints, with the
ability to display:

— registers
— memory contents at address
— call stack

— Memory contents of method variables



Locke Labs

for the common defense

Currently No Pause, set an initial Breakpoint

| console=tty@@ rootgevnamescyueps veruus

| ## starting application at @xg8ez2pogee .
| start- b 8020a0b0

*In between this and the previous slide,
a warm reset of the board was
performed by the ‘p r’ command.
*Instead of entering the ‘g’ command, a
breakpoint was set at the NOP
instruction at 0x8020a0b0.

*This instruction is in the return path
for the sum of a series from N to 1.
*The debugger verified the instruction
was a NOP, set the breakpoint and
echoed corresponding status ‘Bkpt Set’.

18 April 2017 New Tools for STEM, Cyber, and Makers 9



Locke Labs

for the common defense

Breakpoint is not set in Timer processing

S T e R 1 W e e
| ## Starting application at @xB828e8ea@ .
| start— b 8028a@b@
| Bkpt Set
| start- g
| hello - int —» TIMER —=
[ int) -= TIMER ==
| int -> TIMER -=
liing o TIMER -5
sl

*Enter ‘g’ to continue execution of the

runtime.
*The timer fires as before, no difference in

execution.

*‘t d’ disables the timer.

*The breakpoint is in a recursive routine used
to test stack memory management and
overflows.

*The routine is demonstrated in following
slides.

18 April 2017 New Tools for STEM, Cyber, and Makers 10



Locke Labs

for the common defense

Hit a Breakpoint, But then Continue

| int -> TIMER —>
| int —> TIMER -=
I+ d
| hello - s t 22PEARA2
| 9xB020a0b0
| bkpt- g
9x00000003
hetlo - M

e

Locke Labs *The series summation is invoked by
_M ‘ )
Jor the common detenze M the ‘s t/, or stack test command.

*Here, N = 2.

Jeff sparkman B °The breakpoint at 0x8020a0b0 is hit.
e *Execution is continued by entering
the ‘g’ command.

*The stack test routine prints the
sum, 3.

*Here, the first series summation call
received a value of 2, followed by a
recursive call with argument of 1 [2 —
1 = 1], where the breakpoint was hit.

18 April 2017 New Tools for STEM, Cyber, and Makers 11



Locke Labs

for the common defense

Display Stack Frames and Local Variables

console=tty®® rootdevname=c@d@pl verbos

## Starting application at 0x80200000 .

start- b
Bkpt Set
start- g

hello -

8020a0b0

int -> TIMER ->

int -> TIMER ->
int -> TIMER ->
int -> TIMER ->

td
hello -
OxB020a0d
bkpt- g
0x000000
hello -
0xB020a0d
bkpt- f
0xB802117
Ox802117
1s frame
index -
#vars
rtnAd

index
#vars
rtnAd -

index
#vars
rtnAd -

index
#vars
rtnAd

index
#vars
rtnAd -

bkpt- []

s t 00000002
b@

03

s t 00000003
bo

1

98

84

3

0x00000000
0x00000002
Ox8020a0dfc

0x00000001
0x00000002
0xB8020a0fc

0x00000002
0x00000002
0xB8020a394

0x00000003
0x00000004
0xB020acd8

0x00000004
0x00000006
0x80202098

18 April 2017

*Several lines down on the left, the stack
test is repeated with the command ‘s t
00000003,

*The breakpoint is hit, and all the
current stack frames are listed with the
‘fI” command.

*For each frame, the number of local
variables and return address are listed
*A few lines from the top on the right,
the register values at the breakpoint are
displayed with the ‘dr’ command.

*On the lower half of the right, the local
variables of several of the stack frames
are displayed via the ‘f v | 0000000i’
command, where “i” is 0, 1, and 2.

New Tools for STEM, Cyber, and Makers

index — 0x00000004
#vars — 0x00000006
rtnAd - O0x80202098

bkpt— dr

cpsr— Bx600001893
RO: 0x00000001
R1: 0x00000001
R2: ©x80211000
R3: ©OxB80200000
R4: ©x8@©211798
R5: ©x80211784
R6: ©x80211798
R7: @x9ff63c99
R8: ©x80211800
R9: ©Ox80211000
RA: 0x00000000
RB: 0x00000001
RC: ©0x00000000
RD: ©x8021173c
RE: ©0x8020a0fc
bkpt— f v 1 00000000
2x80211798
2x80211784

1s vars

index — 0x00000000
val — 0x00000001

index — 0x00000001
val — 0xP0000001

bkpt— f v 1 00000001
9x80211798
2x80211784

1s vars

index — Ox00000000
val — Ox00000002

index — 0x00000001
val — 2x00000001

bkpt— f v 1 00000002
9x80211798
9x80211784

1ls vars

index — 0x00000000
val — 0x00000003

index — 0x00000001
val — 0x802123a8

bkpt— []

12



Locke Labs

for the common defense

Caveats (1 of 2)

* Proof of concept, necessary but not sufficient capabilities to
be a compliant JVM

— Memory access, memory allocation and constraints, process
interrupts

 “Execution environment” is not a JVM

— Only executes native code statically linked with the execution
environment

— Currently a very small subset of the Java language features are
implemented

 Static classes, methods, primitive fields (int and boolean), dynamic
allocation of character arrays (no memory reclamation)

» Utilizing custom annotations to integrate link time information, Java
source, and a limited amount of hard coded native assembly source

* No objects, exceptions, or threads yet

— Have not created a target Java platform, using project specific

packages for defining and testing the current capability of heap
and stack errors.



Locke Labs

for the common defense

Caveats (2 of 2)

* Java Specs
— Java Language Specification, Java SE 8 Edition, 2015-02-13
— Java Virtual Machine Specification, Java SE 8 Edition, 2015-02-13

e Status of JVM Instruction implementation

— Implemented to varying degrees - aload, arraylength, astore,
bipush, caload, castore, dup, getstatic, goto, iadd, iand, iconst,
if_icmpge, ifeq, iflt, iinc, iload, imul, invokestatic, ireturn, istore,
isub, Idc, newarray, putstatic, return

— Currently no implementation includes — any array other than
char array, double instructions, float instructions, related to
objects such as invokespecial or invokevirtual, switch statements
such as lookupswitch or tableswitch, synchronization such as
monitorenter or monitorexit



Locke Labs

for the common defense

Workflow (1 of 2)

e Cross Platform Toolchain
— Cross compiled Minix ARM port to BeagleBone Black
— http://wiki.minix3.org/doku.php?id=developersguide:minixonarm
— From this, | am using u-boot and cross-platform GNU binutils — as, Id,
objcopy, and objdump
e Target Build Process

— Netbeans compile of embedded Java and native generation tool (also
Java)
— Run the native generation tool
* Depends on BCEL and Velocity and generates ARM assembly
* Running with JDK 8

— Run as, Id, objcopy, and objdump

* Ldis generating ELF, objcopy is transforming to binary

* Objdump generates asm of linked executable to manually lookup addresses for
breakpoints

15



Locke Labs

for the common defense

Class files of
embedded code

Workflow (2 of 2)

ARM Assembly Files

s, |d, objcopy

Velocity

Templates
* Typical asm files

* JVM instruction
implementation

BCEL
Extract
a
>

Merge

Micro SD Adapter
Transfer between
Host and Target

* This is a notional diagram of the native code generation process

* The flow ‘Templates, Merge, Assembly File’ is repeated for a variety of files and types.

* Some of these file types are the entry point to the executable, assembly routines that
process ARM exceptions, templates for implementation of JVM instructions, etc.

* This native generation approach is very straightforward, no optimization is performed to
reduce code size, number of operand stack accesses, etc

18 April 2017

New Tools for STEM, Cyber, and Makers 16



Locke Labs

for the common defense

Projects €3 | Files Services
v @‘GBeth
v | [gSource Packages

£ beth

5 jm.io

E5 jm.lang

[zlockelabs.examples

£ lockelabs.jm.annotations

(5 lockelabs.jm.annotations.armv7a
(5 lockelabs.jm.cpu.armv7a

(5 lockelabs.jm.cpu.armv7a.debug
[]L-,IockeIabs.jm.cpu.armv?a.exc
£ lockelabs.jm.dataformat

£ lockelabs.jm.debugger

£ lockelabs.jm.execution

£ lockelabs.jm.memory.device

£ lockelabs.jm.memory.heap

£ lockelabs.jm.memory.stack

£ lockelabs.jm.nativegen

£ lockelabs.jm.nativegen.examples
&
£ lockelabs.jm.nativegen.opcodes
£ lockelabs.jm.nativegen.opcodes.armv7a
£ lockelabs.jm.opcodes.impl.gen
(5 lockelabs.jm.opcodes.impl.java
(5 lockelabs.jm.soc.am335x

£ lockelabs.jm.soc.am335x.gpio
(5 lockelabs.jm.soc.am335x.intc
£ lockelabs.jm.soc.am335x.prcm
£ lockelabs.jm.soc.am335x.timer
£ lockelabs.jm.soc.am335x.uart
» | [J TestPackages

V¥V vV YV YV YV Y Y Y Y Y Y Y Y Y Y Y Y Y Y VY Y VYYVYVYYVYYYY

18 April 2017

Package Structure

Non-compliant placeholder
namespace for Stack and Heap
errors (jm.lang)

User application code
(lockelabs.examples)

Support code, either offline or on
target (eg,
lockelabs.jm.annotations,
lockelabs.jm.cpu,
lockelabs.jm.memory.heap)

Ahead of time generation of
native code
(lockelabs.jm.nativegen)

‘Drivers’ for modules on the SoC
(lockelabs.jm.soc)

New Tools for STEM, Cyber, and Makers

17



Locke Labs

for the common defense

Embedded Code Examples

e Java main, memory allocation, a SoC module,
memory access, interrupts

e Memory limit implementations

* The following slides illustrate code that runs
on the target.
* Information from the target build process is

included with these slides to illustrate what
was required to execute the Java source code.



Locke Labs

for the common defense

Java main - Initialization

0<Z

63 [ char[] helloPrompt = new char[]{ , 'h', ‘'e', "', ', ‘o', ’ ’ ¥i
64

65 |[

66

67 char[] counterString = new char[HexString.requiredBufferLengthl];
68

& char[] eol = new char[l{'\n', '\r'};
70

71 int uvartLineStatusRegister;

72

73 WatchDogTimer.disable();

74

75 GenlPurposeInputOutput.initialize();
76 DualModeTimer.initialize();

77 InterruptController.initialize();

78

79 DualModeTimer.startTimer();

80

81

82

83 int counter = 0;

84 while (true) {

85 !

* Line 63 illustrates allocation and initialization of char array. Will look at implementation
in following slides.

* Lines 73 — 79 illustrate initializing modules on the Tl SoC (eg, GPIO, Timers, Interrupt
Controller). Examine Interrupt Controller initialization in following slides.

* Line 84 starts the main loop of the main method. lllustrated on next slide.

18 April 2017 New Tools for STEM, Cyber, and Makers 19



Locke Labs

for the common defense

Java main - Loop

82
83 int counter = 0;
84 while (true) {
g5 |/
86 |
87 | Instance.printf(uart@BaseAddress, helloPrompt);
88 Instance.readlLine(uart@BaseAddress, fromUart);
89
90
91
92 GenlPurposeInputOutput.processCommand(fromUart);
93
94 DualModeTimer.processCommand(fromUart);
95
96 PrmDevice.processCommand(fromUart);
97
98 HeapManager.processCommand( fromUart);
99
100 StackManager.processCommand(fromUart);
101
102
103
104
105
106
107 counter++;
108 ¥

109 - ¥

11n

* Line 88 reads characters and carriage return entered on Mac keyboard and transmitted
over USB-to-TTL to UART (aka console port) on Beagle Bone Black.

* Lines 92 — 100 pass the current ‘command’ to each of the processCommand static
methods.

18 April 2017 New Tools for STEM, Cyber, and Makers 20



Locke Labs

for the common defense

Memory Allocation (1 of 3)

newarray.S || ] 100 0 [|af Helloworldjava © ||&] Generatelnstructionjava | |&| InterruptControllerjava ' | (s WatchDi

source | [History | (@ - & Q™S BRBE I LB @G 00 & =
63 |: char[] helloPrompt = new char([]{" ', 'h', 'e', "LU', "L', 'o', ’ ’ B
64
h &j newarray.S D Helloworld €3 @HelloWorld.java X e Code above is from user main.
Source | | History | | G~ &l G "5 & e Atleft are the disassembled JVM
r L4 Pom o - N Sm— . . .

113 o: bipush 9 instructions for the allocation of the char

114 2: newarray char array above.

118 A+ dun * On the next slide, the current JVM
instruction (newarray) is transformed to
native code.

18 April 2017 New Tools for STEM, Cyber, and Makers 21



Locke Labs

for the common defense

Memory Allocation (2 of 3)

s sy v e * Code below only runs during native code

a) @HelloWorld.java 3 | &z newarray.S € generaﬁon-

Source | | History | | - L1~ 9 &% ¢ Each JVM instruction has a corresponding template.

; s At left is the template for newarray.

3 * During code generation, template is merged with

g| B $newArrayethod relevant data from BCEL and written to current asm

g NOP file. In this case, the HelloWorld.S file.

8 * Below, the variable newArrayMethod in the
template at left is replaced with the class and static
method (NewArray.newCharArray on line 296). This
method is shown on the next slide.

EE] newarray.S | €| Generatelnstruction.java & IE] £ “g} Helloworld.java |[@ InterruptController.java ||§[ WatchDogTimer.java
Source History Er-H- 9 &5 E B ‘1? & oo e = Pz =
2&; public void visitNEWARRAY (NEWARRAY obj)
288 O {
289 ArrayTypeCode arrayTypeCode =
290 ArrayTypeCode.arrayTypeCodeOf(obj.getTypecode());
291 switch (arrayTypeCode)
292 {
293 case t_char:
294 {
295 VelocityContext localContext = new VelocityContext(context);
@ localContext.put("newArrayMethod", "NewArray.newCharArray");
297
298 Template template =
299 TemplateForOpcode.getTemplate(argList.getOpcodeTemplateRootDirName(), obj);
300 template.merge(localContext, fw);
301 break;
302 Y ..

18 April 2017 New Tools for STEM, Cyber, and Makers 22



Locke Labs

for the common defense

Memory Allocation (3 of 3)

— — - — —v

21 | [ Generatelnstruction.java ' | |&| NewArray.java )

Source | | History | [@ [~ &~ Q& SR F & B &
38

39

40 public static int newCharArray(int numberOfChars)
41 o {

42 int address = allocateCharArray(numberOfChars);
43

44 l HeapMemory.writeHeapInt(address, numberOfChars);
45

46 l return address;

47 - }

48

AD

* This method runs only on the target and allocates char arrays from the heap and
initializes each array with the length of the array. The presence of the length enables
index range checking to verify that the bounds of the array are not being exceeded by
application code.

18 April 2017 New Tools for STEM, Cyber, and Makers 23



Locke Labs

for the common defense

N |45 HelloWorld java €

@] InterruptController.java '

Source | History | B-r-&S- Q&S E G &
75 GenlPurposeInputOutput.initialize();

76 DualModeTimer.initialize();

77 InterruptController.initialize();

78

Source

—

BR-E ARSEEL e R

&
(N4

History

89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115

18 April 2017

public static void setTimer2InterruptPriority()
{
0 1s lghest priority
) Llowing ine 1s sing a priority of 1
DeviceMemory.writeInt(INTC_ILR_address_irg68, 0x04);
¥

private static void enablePriorityThresholdMechanism()

{

et priority of the current -
Ch1ls 1S LOWE 1 priority oT tT1ime SNOow DOVE
DeviceMemory.writeInt(INTC_THRESHOLD address, @x07);
¥

public static void initialize()

{
enablePriorityThresholdMechanism() ;
setTimer2InterruptPriority();
unmaskTimer2Interrupts();
acknowledgeIRQ();
enableInterrupts();

SoC Module — Interrupt Controller

* Lines 75 — 77 at left are from the Java
main method. One of the methods,
InterruptController.initialize, is shown
below.

* The code at left calls the
DeviceMemory class to write the
memory mapped control registers of the
InterruptController.

New Tools for STEM, Cyber, and Makers 24



Locke Labs

for the common defense

Memory Access (1 of 3)

L

7
8 package lockelabs.jm.annotations;
9

10
11
12 T Jauthor
13

14 public @interface WholeMethodGeneration {
15

16 ¥

17

\)l

E§ HelloWorld.java I@ DeviceMemory.java _

Source History | Er B Q&5 B i & B o .

8 package lockelabs.jm.memory.device; * ln the COde at IEﬂ, eaCh methOd IS

9 .

10 & import lockelabs.jm.annotations.WholeMethodGeneration; decorated Wlth the

> WholeMethodGeneration annotation.

iy T et * During the native code generation

38| Ppublic class DeviceMemory { process, any method with this annotation

1 P @uholeMethodseneration is generated by reading one template for
li ic i d. (i ) . . . .

o T' guotic static Int readintiint address the entire method instead of iterating

52[ g T through the JVM instructions generated

23 .

24 »  @uholeMethodGeneration by the Java compiler for the method.

25 public static void writeInt(int address, int value) . .

%0 * An example of this process is shown on

27 } .

28 the next slide.

29 ¥

30

18 April 2017 New Tools for STEM, Cyber, and Makers 25



.'yl

|

Locke Labs

for the common defense

=]

= -

— ~v

— — - -
@ Helloworld.java |@ Generatelnstructions java € I@ StackManager.java l@ Generatelnstruction.java _

Source | | History | [@ [~ Bl QR &H B L Rkl o O & =
@ private static void wholeMethodGeneration(ArgList argList, FileWriter fw,
36 JavaClass javaClass, Method method, VelocityContext context)
37 & {
38 try
39 {
40 String templateFullPath;
41 Template template;
42 VelocityContext localContext = new VelocityContext(context);
43
44 templateFullPath = argList.getMethodTemplateRootDirName()
45 + File.separator + method.getName() + ".S";
46 template = Velocity.getTemplate(templateFullPath);
47
48 template.merge(localContext, fw);
49 ¥
@ catch (Throwable t)
51 {
@ t.printStackTrace();
53 ¥
54 - ¥
55
56
57 public static void forMethod(ArgList argList, FileWriter fw,
58 JavaClass javaClass, Method method, StackFrame stackFrame,
59 VelocityContext context)
60 [ {
61
62 AnnotationEntry[] annotations = method.getAnnotationEntries();
63 String annotationName;
64 for (AnnotationEntry annotation : annotations)
65 {
66 annotationName = annotation.getAnnotationType();
67 if (annotationName.equals(
= 68 Llockelabs/jm/annotations/Whol@MethodGeneration;"))
i {
70 System.out.println("annotation type
= | + annotation.getAnnotationType());
72 wholeMethodGeneration(argList, fw, javaClass, method, context);
73 return: .
Find: whole i &L previous I Next | =R LT 2 FE

18 April 2017

New Tools for STEM, Cyber, and Makers

Memory Access (2 of 3)

* Shown at line 57, forMethod
generates the native assembly
code for an embedded Java source
code method.

* |f the Java method has the
WholeMethodGeneration
annotation, the template is loaded
and merged with the current
context (shown in lines 36 — 54).

* The result is written to the ARM
assembly file being generated for
the current Java class.

26



Locke Labs

for the common defense

Memory Access (3 of 3)

= - - — - _
@} Helloworld.java [5] writelnt.S €3 |§] newarray.S H@ NewArray.java = H@ HeapManager.java = .

Source History 5 '

LDR

0O~ WL B WN

(=]

LDR

-
-

STR

e
0N LA WN

MOV

N N
- S WO

MOV

N NN
- W

LDMFD

N NN
~ o wm

MOV

NN
O o

BX

w w
- o

$ocRegl, [$regVP,
$ocReg2, [$regVP,

$ocReg2, [$ocRegl]

$regTempVP, $regVP
SP, S$regFP
SP!,

SP, $regTempVP

LR

18 April 2017

New Tools for STEM, Cyber, and Makers

* The template at left is not the
whole method for writelnt.

* There is a preMethod
template that implements
stack overflow checks and
initializes the stack frame for
the current method.

* The native generation process
needs some refactoring. You
can see at left that each
method is responsible for
popping the current frame.

* Template variables are used
here as well so that | can easily
change register convention
when needed.

27



Locke Labs

for the common defense

Interrupts (1 of 4)

LDR RO, =exc_vector_table During startup of the execution environment,
MCR pl5, @, RO, cl12, c@, 0 initialize the ARM Vector Base Address Register
%] [ v LI /g p

& Generatelnstructionjava |z excS ©

Source | History | RS- QS B ig ¢ @

7

8 .text

9 .balign 4096

10| # LABEL(ex sect t e)

11| .globl exc vector table * On the ARM MPU, when one of the
B oxc_vector_table: exceptions (Reset, Data Abort,

13 ldr pc, =excl # Reset =

14 \dr pc, =exc2 /x Undefined Instruction s Interrupt from Interrupt Controller,
- ldr pc, =exc3 /% Supervisor Call » etc) occurs, instruction execution

16 ldr pc, =excd « Prefetch Abort = . .

17 ldr pc, =exc5 /+ Data Abort jumps to the corresponding handler
18 ldr pc, =exchb « Hypervisor Call = . .

19 Wdr pe. —exc? 7+ Interrupt — irq entry 3 (Resgt.excl, Intgrrupt.exc7) by

20 ldr pc, =exc8 /% Fast Int t loading the PC with the address of
;; that handler.

18 April 2017 New Tools for STEM, Cyber, and Makers 28



Locke Labs

for the common defense

Interrupts (2 of 4)

- —— - — ~—

&5 Helloworldjava ' [§a] exc.S © |gz) readintS || Generatelnstructions.java ' ||| StackManagerjava ' ||
Source mistory | (@ @ Bl Q @ B LG F S B o0 @

208

209 .text

210 .align 2
211 .globl exc?

212| .type exc7, %functior * The merged version of
213 .code 32 . . . .

| axer: this file, which is part of
2 sub - tr, Lr, . . the execution

216 srsdb sp!, #0x01 ( f V ) ]

217 cps 0x01 environment, is how Java
218 push {réo-r12, 1r} .

219 source code is called when
220 bl $className.$interruptJavaHandler .

221 an interrupt occurs.

222 dsb

223 pop {ro-r12, 1r}

224 rfeia sp

225

* The file shown above, exc.S, is the ‘template’ version.

* Line 220 is an example of two Velocity ‘variables’ in this template.

* At native code generation time, SclassName and SinterruptJavaHandler are replaced
with their actual names as supplied by Java source code. Example of this on the next
slide, line 157 and method setMethodNames.

18 April 2017 New Tools for STEM, Cyber, and Makers 29



Locke Labs

for the common defense

— — —
1;] &5 Helloworld.java < ]E&] GenerateClasses java 3 ||s]; GenerateBinjava ) [§] excS £ _

Interrupts (3 of 4)

— —
';]@ HelloWorld.java E] ArmExceptionHandlers.java £} IES] GenerateClasses

Source History | B-r-8- Q7 F5FBR B O = Source History | HE-S-9 =SB 54
131 7/t
132 private static void installAnyInterruptHandlers(String outDirNode, 8 package lockelabs.jm.annotations.armv7a;
133 ArgList argList, JavaClass javaClass, VelocityContext context, 9
134 GenerationResult result) throws Exception 10 ok
135 O { 11 « ARM defines the 8 exception handlers listed |
136 12 same as Java exceptions. These ARM handlers
137 final String fileName = "exc"; 13 interrup
138 At

14 # @author je
139 AnnotationEntry[] annotations = javaClass.getAnnotationEntries(); 15 .
140 String annotationName; . . .
! 16 ublic @interface ArmExceptionHandlers

141 for (AnnotationEntry annotation : annotations) 17 P @ P {
142 { .
143 annotationName = annotation.getAnnotationType(); ig String resstiiandler();
144 if (annotationName.equals( . . .

@ "Llockelabs/jm/annotations/armv7a/ArmExceptionHandlers;")) 20 String undefinedHandler();
146 { 2 . .
147 System.out.println("annotation type 22 String supervisorHandler();
148 + annotation.getAnnotationType()); 23
149 24 String prefetchHandler();

* FileWriter fw = new FileWriter(outDirNode + File.separator + 25
151 fileName + ".5"); 26 String dataHandler();
152 27
153 String templateFullPath; 28 String hypervisorHandler();
154 Template template; 29
155 VelocityContext localContext = new VelocityContext(context); 30 String interruptHandler();
156 31
157 setMethodNames(javaClass, annotation, localContext); 32 String fastIntHandler();
158 33
159 templateFullPath = argList.getMethodTemplateRootDirName() 34 }
160 + File.separator + fileName + ".S"; 35
161 template = Velocity.getTemplate(templateFullPath);
162
163 template.merge(localContext, fw);
164 - fucclosel). —

* Both of the files above are relevant only during native code generation.
* The file on the left illustrates reading the template exc.S and generating corresponding

merged ARM assembly language file exc.S.

18 April 2017

New Tools for STEM, Cyber, and Makers

30



Locke Labs

for the common defense

Interrupts (4 of 4)

w oy v v NV
— — _—
EN @ HelloWorld.java <! |@] InterruptHandlers.java £} |[Q ArmExceptionHandlers.java _
Source | [ History | i [@ [~ 8- i & HF BN IiF & B E!E P s
29
30 g¢ ( .jm. . v7a.
31
32 @ArmExceptionHandlers(dataHandler = "dataHandler”,
53 fastIntHandler = "fastI er
34 hypervisorHandler = "hy
35 interruptHandler = "inte
36 prefetchHandler = "prefetc
37 resetHandler = "rese
38 supervisorHandler = ' ler",
39 undefinedHandler = "unde r')
40 public class InterruptHandlers {
41
42 [ public static void interruptHandler ()
43 B {
44 int irg = InterruptController.getActiveIRQ();
45 if (InterruptController.timer2IRQ == irq)
46 {
47 Inte ontr er. i
48
49 Instance.printf(uartdBaseAddress, InterruptHandlerMessages.preMsg);
50 Instance.printf(uartdBaseAddress, InterruptHandlerMessages.timerMsg);
51 Instance.printf(uartdBaseAddress, eol);
52
53 GenlPurposeInputOutput.advanceLED();
54
55 DualModeTimer.clearPendingEvent();
56 InterruptController.acknowledgeIRQ();
57 ¥
58 else
59 {
60 Instance.printf(uart@BaseAddress, InterruptHandlerMessages.preMsg);
61 Instance.printf(uart@BaseAddress,
§r 62 InterruptHandlerMessages.interruptHandlerMsg);
= 63 Instance.printf(uart@BaseAddress, eol);
d 64 }
—] 65 t }
66
Qi SearchRaculte SR autnur SR Actinniitame 8] & L1canec M _

18 April 2017 New Tools for STEM, Cyber, and Makers

* This file was rearranged to
place relevant details on one
screen.

* This illustrates the Java source
code that processes an
interrupt.

* As shown in previous slides,
the ArmExceptionHandlers
annotation is used during native
code generation to insert the
name of the Java source
methods to call from the
execution environment.

* The method interruptHandler
is the method invoked when the
ARM MPU responds to the
Interrupt Controller exception,
the exc7 label on a previous
slide.

31



Locke Labs

for the common defense

Memory Limits — Heap (1 of 3)

- = v — ~

I | [ Helloworld.java 7 ||&] HeapManager.java © ||&] NewArrayjava
Source | | History | | [@ [~ 8- Q & & &g F & B & o=
116 public static int allocateBytes(int numberOfBytes)
117 © {
118 TODO ow exc if out o ( emory
119 if ((nextFreeAddress + numberOfBytes) > heapEndAddress)
120 {
121 throw new OutOfMemoryError();
122 b
123
124 int currentFreeAddress = nextFreeAddress;
125 nextFreeAddress = nextFreeAddress + numberOfBytes;
126
127 et 0;
128 return currentFreeAddress;
129 - ¥
12N

* HeapManager.allocateBytes, shown above, is called in the context of allocating a char array.
* On line 121 above, an OutOfMemoryError exception is thrown when a heap allocation fails.
* The current implementation of new and throwing exceptions is only a proof of concept that
illustrates Java detection and halt when stack or heap allocation fails.

* Current implementations of new and throw are not presented.

* Implementation of the heapEndAddress is illustrated on following slides.

18 April 2017 New Tools for STEM, Cyber, and Makers



Locke Labs

for the common defense

(%]

by

v [EIE Vg A g

-

@ HelloWorld.java ' |&] LLMAIN.S €3 |@ HeapManager.java |

Source History ' o v ‘Q % 5‘
bY

70 .data

71  .align 4

72, .globl heap_min_addr

73| .type heap_min_addr STT_COMMON
74 heap_min_addr:

75 .Space 2048

76| .globl heap_max_addr

77| .type heap_max_addr STT_COMMON
78 heap_max_addr:

79

Memory Limits — Heap (2 of 3)

* This slide and the following illustrate how the
heap end address is currently integrated with Java
source.

*LLMAIN shown at left is the entry point for the
executable started by u-boot.

* On line 78, the end address of the heap is
statically defined.

&5, HelloWorld.java ' ||| JmFinalStaticintField.java © [fg5] LLMAINS 7 ||| HeapMan:

b

source  Hisory @ [@- L. @ @ & =0y ¢ & ¢ *Theannotation at left is utilized to
- } integrate the assembly language
13 heap end address and the Java
14 public @interface JmFinalStaticIntField {
15 | source references to the same
ig ) String jmProvidedLabel() default "undefined"; address.
18

18 April 2017 New Tools for STEM, Cyber, and Makers 33



Locke Labs _
for the common defense MemOry leltS — Heap (3 Of 3)

Source | | History | [@ [ Bl Q& HF R &£ & B &0 |
83

@ @ImFinalStaticIntField(jmProvidedLabel = "heap_min_addr")

@ private static int heapBaseAddress = 0;

@ private static int nextFreeAddress = heapBaseAddress;

87

88 @ImFinalStaticIntField(jmProvidedLabel = "heap_max_addr")

@ private static int heapEndAddress = 100;

90

a1

* During class init, the address of the provided label is stored in the annotated int.

* This is implemented with a ‘special case’ template for the putstatic JVM instruction.
* This special case drops the value provided by the class file and instead uses the
address of the label provided by the annotation.

18 April 2017 New Tools for STEM, Cyber, and Makers



Locke Labs

for the common defense

Discussion

* Working towards a KickStarter campaign for June
2017

— Prep and release all code as open source, considering
a BSD 4-clause license

— Write a book with 2 general topics

» Step by step instructions for novice to reproduce the
capabilities described here

e Detailed description of design and implementation
— |ldentify a stretch goal of a Java implementation of
required GNU binutils. Primarily, as, Id, objcopy,

objdump. Believe these would have to be released as
GPL.

e Questions



Locke Labs

for the common defense

18 April 2017

Backup Slides

New Tools for STEM, Cyber, and Makers

36



Locke Labs

for the common defense

Classes Java main doesn’t depend on?

* InterruptHandlers
* HeapManager

* HeapMemory

* NewArray

Native code generation visits all dependencies of Java main
and generates corresponding native code. The classes
above don’t appear as dependencies and therefore have to
be included manually in the list of classes to generate.



Locke Labs

for the common defense

How Much ‘Plain” Assembly?

* LLMAIN.S — defines the method started by u-boot.

* exc.S — defines the exception vector table and initial service routines.

* jymMain.S — invokes methods to initialize static data of classes and invokes Java
main method.

* Files to read and write system control / status registers : flush caches to
implement setting breakpoint, address of instruction fault, read and write int
values to memory, etc.

38



Locke Labs

for the common defense

Register Convention

a @HelloWorld.java X @] RegisterConvention.java &}

Source | | History | i [@ B @RS B &£ &R EA 00 &L 2
23

24 public static void initializeContext(VelocityContext context)

25 B {

26 VES

27 #* RO-R15

28 #* RO-R3 : operands for opcodes

29 #* R4 : Variable Pointer / Top Address (actually end of caller stack)
30 # R5 : Frame Pointer, the list of registers preserved between calls
31 #* R6 : Temp Variable Pointer (regTempVP)

32 # R7

33 # R8 : current stack max

34 # R9 : current stack min

35 #* R10 : is pmgmt state

36 # R11 : thread ID

37 #* R12 : thread state base address

38 # R13 : SP - stack pointer

39 # R14 : LR - link register (return address to caller)

40 # R15 : PC - program counter

41

Find: printf > &L Previous SiNext i gl &° B BB

* Some of the above are notional at this point.

* RO-R3, R4, R5 are the ones listed most frequently in the examples.
* RO-R3 referenced as ocRegl — ocReg3 in templates (oc = op code)
* R4, R5, and LR are currently pushed to stack between calls.

18 April 2017 New Tools for STEM, Cyber, and Makers

39



Locke Labs

for the common defense

18 April 2017

Notional Stack Contents

R4 - VP - end of caller
zzz stack (Var Ptr)
aaa
bbb
cce
ddd
cec

fff Local Variables

LR

RS R5 - FP - caller's local
R4 variables (Frame Ptr)
ggg
hhh

iii

i1

kkk

1

mmm
nnn SP - Callee local stack

New Tools for STEM, Cyber, and Makers

40



