
Locke Labs
for the common defense

18	April	2017	 1	

New	Tools	for	STEM,	
Cyber,	and	Makers	

www.lockelabs.net		

Locke Labs
for the common defense

18	April	2017	 New	Tools	for	STEM,	Cyber,	and	Makers	

Overview	

•  MoCvaCon	and	RaConale	
–  Execute	Java	source	code	directly	on	hardware	
–  Concept	inspired	in	part	by	modular	features	of	Java	9	

•  Demo	ConfiguraCon	and	Slides	
–  Embedded	Hardware	
–  Host	configuraCon	

•  Caveats	
–  Proof	of	concept,	necessary	but	not	sufficient	capabiliCes	

•  Memory	access,	memory	allocaCon	and	constraints,	process	interrupts	
–  “ExecuCon	environment”	is	not	a	JVM	

•  Workflow	and	Package	Structure	
•  Embedded	Code	Examples	

–  Java	main,	memory	allocaCon,	a	SoC	module,	memory	access,	
interrupts	

–  Memory	corrupCon	due	to	stack	or	heap	overflow	is	currently	
prevented.		Current	heap	protecCon	approach	is	presented.	

•  Discussion	
2	

Locke Labs
for the common defense

18	April	2017	 New	Tools	for	STEM,	Cyber,	and	Makers	

MoCvaCon	and	RaConale	

•  Currently	we	have	large	numbers	of	cyber	vulnerabiliCes	and	
aVacks	
–  At	the	same	Cme,	we	have	an	increase	in	the	number	of	people	

interested	in	STEM,	cyber	technology,	and	makers	interested	in	
electronics	

•  SuggesCng	that	these	3	communiCes	have	a	similar	requirement		
–  How	to	more	easily	experiment	with	the	interac3on	between	hardware	

and	so6ware	
•  This	proof	of	concept	demonstrates	that	the	Java	language	and	

pending	changes	(modularity)	have	several	advantages	over	
tradiConal	embedded	programming	(C	and	flavors	of	Unix)	
–  Reduce	the	aVack	surface	by	reducing	the	number	of	lines	of	code	

execuCng		
–  Stronger	typing		
–  More	consistent	memory	constraints	
–  Per	TIOBE,	the	most	popular	programming	language	
–  Reduce	the	effort	of	se_ng	up	a	cross-plaaorm	toolchain	

3	

Locke Labs
for the common defense

18	April	2017	 New	Tools	for	STEM,	Cyber,	and	Makers	

Demo	Slides	

•  Demo	Java	applicaCon	uClizes	Cmers,	interrupts,	and	General	Purpose	Input	
Output	to	blink	LEDs	on	a	fixed	frequency	

•  Embedded	Hardware	
–  IniCally	targeCng	a	Beagle	Bone	Black	board	with	a	TI	SoC	(AM3358B)	with	an	ARM	Cortex-A8	

MPU	
–  SoC	includes:		

•  UART	
•  Dual	Mode	Timer	
•  Interrupt	Controller	
•  General	Purpose	Input	Output	
•  Power,	Reset,	and	Clock	Management	
•  Programmable	Real-Time	Unit	and	Industrial	CommunicaCon	Subsystem	(dual	32-bit	RISC	cores)	
•  Enhanced	Direct	Memory	Access	
•  3-port	gigabit	ethernet	switch	
•  Pulse	Width	ModulaCon	Subsystem	
•  USB	
•  I2C		
•  Controller	Area	Network	(CAN)	
•  MulCchannel	Serial	Port	Interface	(McSPI)	

•  Host	configuraCon	
–  2010	MacBook	Pro	
–  Version	4.0.2	of	‘screen’	terminal	emulator	
–  USB	to	TTL	Serial	Cable	and	Drivers	to	BBB	Console	Serial	UART	

4	

Locke Labs
for the common defense

18	April	2017	 New	Tools	for	STEM,	Cyber,	and	Makers	

Start	the	runCme,	then	disable	Timers	

5	

• RunCme	waits	for	‘g’	
command	to	run	
• Hardcoded	to	start	2	sec	
Cmer.		Timer	interrupt	
service	rouCne	advances	to	
the	next	LED		

• ‘int’	in	output	
denotes	that	INTC	
generated	the	ARM	
excepCon	
• ‘TIMER’	denotes	that	
the	interrupt	request	
was	generated	by	the	
Cmer	

• Timer	Disable	(‘t	d’)	
command	stops	the	Cmer	

Locke Labs
for the common defense

18	April	2017	 New	Tools	for	STEM,	Cyber,	and	Makers	

InteracCvely	Turn	a	LED	Off	

6	

• On	previous	slide,	a	single	LED	was	illuminated	(LED	2)	
• LED	clear	command	(‘l	2	c’)	writes	0	to	the	control	bit,	turning	the	LED	off		

Locke Labs
for the common defense

18	April	2017	 New	Tools	for	STEM,	Cyber,	and	Makers	

InteracCvely	Turn	a	LED	On	

7	

• LED	set	command	
(‘l	4	s’)	writes	a	1	
to	the	control	bit,	
turning	the	LED	on.	
• Now	LED	4	is	
illuminated.	

Locke Labs
for the common defense

18	April	2017	 New	Tools	for	STEM,	Cyber,	and	Makers	

Simple	Console	Port	Debugger		

•  Java	code	also	implements	a	simple	command	
line	debugger	that	interacCvely	provides	
limited	(only	on	NOP)	breakpoints,	with	the	
ability	to	display:	
–  registers	
– memory	contents	at	address	
– call	stack	
– Memory	contents	of	method	variables	

8	

Locke Labs
for the common defense

18	April	2017	 New	Tools	for	STEM,	Cyber,	and	Makers	

Currently	No	Pause,	set	an	iniCal	Breakpoint	

9	

• In	between	this	and	the	previous	slide,	
a	warm	reset	of	the	board	was	
performed	by	the	‘p	r’	command.	
• Instead	of	entering	the	‘g’	command,	a	
breakpoint	was	set	at	the	NOP	
instrucCon	at	0x8020a0b0.	
• This	instrucCon	is	in	the	return	path	
for	the	sum	of	a	series	from	N	to	1.	
• The	debugger	verified	the	instrucCon	
was	a	NOP,	set	the	breakpoint	and	
echoed	corresponding	status	‘Bkpt	Set’.	

Locke Labs
for the common defense

18	April	2017	 New	Tools	for	STEM,	Cyber,	and	Makers	

Breakpoint	is	not	set	in	Timer	processing	

10	

• Enter	‘g’	to	conCnue	execuCon	of	the	
runCme.	
• The	Cmer	fires	as	before,	no	difference	in	
execuCon.	
• ‘t	d’	disables	the	Cmer.	
• The	breakpoint	is	in	a	recursive	rouCne	used	
to	test	stack	memory	management	and	
overflows.	
• The	rouCne	is	demonstrated	in	following	
slides.	

Locke Labs
for the common defense

18	April	2017	 New	Tools	for	STEM,	Cyber,	and	Makers	

Hit	a	Breakpoint,	But	then	ConCnue	

11	

• The	series	summaCon	is	invoked	by	
the	‘s	t’,	or	stack	test	command.	
• Here,	N	=	2.	
• The	breakpoint	at	0x8020a0b0	is	hit.	
• ExecuCon	is	conCnued	by	entering	
the	‘g’	command.	
• The	stack	test	rouCne	prints	the	
sum,	3.		
• Here,	the	first	series	summaCon	call	
received	a	value	of	2,	followed	by	a	
recursive	call	with	argument	of	1	[2	–	
1	=	1],	where	the	breakpoint	was	hit.	

Locke Labs
for the common defense

18	April	2017	 New	Tools	for	STEM,	Cyber,	and	Makers	

Display	Stack	Frames	and	Local	Variables	

12	

• Several	lines	down	on	the	lep,	the	stack	
test	is	repeated	with	the	command	‘s	t	
00000003’.	
• The	breakpoint	is	hit,	and	all	the	
current	stack	frames	are	listed	with	the	
‘f	l’	command.	
• For	each	frame,	the	number	of	local	
variables	and	return	address	are	listed	
• A	few	lines	from	the	top	on	the	right,	
the	register	values	at	the	breakpoint	are	
displayed	with	the	‘dr’	command.	
• On	the	lower	half	of	the	right,	the	local	
variables	of	several	of	the	stack	frames	
are	displayed	via	the	‘f	v	l	0000000i’	
command,	where	“i”	is	0,	1,	and	2.	

Locke Labs
for the common defense

18	April	2017	 New	Tools	for	STEM,	Cyber,	and	Makers	

Caveats	(1	of	2)	

•  Proof	of	concept,	necessary	but	not	sufficient	capabiliCes	to	
be	a	compliant	JVM	
–  Memory	access,	memory	allocaCon	and	constraints,	process	

interrupts	
•  “ExecuCon	environment”	is	not	a	JVM	

–  Only	executes	naCve	code	staCcally	linked	with	the	execuCon	
environment	

–  Currently	a	very	small	subset	of	the	Java	language	features	are	
implemented	
•  StaCc	classes,	methods,	primiCve	fields	(int	and	boolean),	dynamic	
allocaCon	of	character	arrays	(no	memory	reclamaCon)	

•  UClizing	custom	annotaCons	to	integrate	link	Cme	informaCon,	Java	
source,	and	a	limited	amount	of	hard	coded	naCve	assembly	source	

•  No	objects,	excepCons,	or	threads	yet	
–  Have	not	created	a	target	Java	plaaorm,	using	project	specific	

packages	for	defining	and	tesCng	the	current	capability	of	heap	
and	stack	errors.	

13	

Locke Labs
for the common defense

18	April	2017	 New	Tools	for	STEM,	Cyber,	and	Makers	

Caveats	(2	of	2)	

•  Java	Specs	
–  Java	Language	SpecificaCon,	Java	SE	8	EdiCon,	2015-02-13	
–  Java	Virtual	Machine	SpecificaCon,	Java	SE	8	EdiCon,	2015-02-13	

•  Status	of	JVM	InstrucCon	implementaCon	
–  Implemented	to	varying	degrees	-	aload,	arraylength,	astore,	

bipush,	caload,	castore,	dup,	getstaCc,	goto,	iadd,	iand,	iconst,	
if_icmpge,	ifeq,	iflt,	iinc,	iload,	imul,	invokestaCc,	ireturn,	istore,	
isub,	ldc,	newarray,	putstaCc,	return	

–  Currently	no	implementaCon	includes	–	any	array	other	than	
char	array,	double	instrucCons,	float	instrucCons,	related	to	
objects	such	as	invokespecial	or	invokevirtual,	switch	statements	
such	as	lookupswitch	or	tableswitch,	synchronizaCon	such	as	
monitorenter	or	monitorexit	

14	

Locke Labs
for the common defense

18	April	2017	 New	Tools	for	STEM,	Cyber,	and	Makers	

Workflow	(1	of	2)	

•  Cross	Plaaorm	Toolchain	
–  Cross	compiled	Minix	ARM	port	to	BeagleBone	Black	
–  hVp://wiki.minix3.org/doku.php?id=developersguide:minixonarm		
–  From	this,	I	am	using	u-boot	and	cross-plaaorm	GNU	binuCls	–	as,	ld,	

objcopy,	and	objdump	
•  Target	Build	Process	

–  Netbeans	compile	of	embedded	Java	and	naCve	generaCon	tool	(also	
Java)	

–  Run	the	naCve	generaCon	tool	
•  Depends	on	BCEL	and	Velocity	and	generates	ARM	assembly	
•  Running	with	JDK	8	

–  Run	as,	ld,	objcopy,	and	objdump	
•  Ld	is	generaCng	ELF,	objcopy	is	transforming	to	binary	
•  Objdump	generates	asm	of	linked	executable	to	manually	lookup	addresses	for	

breakpoints	

15	

Locke Labs
for the common defense

18	April	2017	 New	Tools	for	STEM,	Cyber,	and	Makers	

Workflow	(2	of	2)	

16	

Class	files	of		
embedded	code	

Templates	
• 	Typical	asm	files	
• 	JVM	instrucCon	
implementaCon	

Velocity	
Merge	

ARM	Assembly	Files	

BCEL		
Extract	

Micro	SD	Adapter	
Transfer	between		
Host	and	Target	

as,	ld,	objcopy	

• 	This	is	a	noConal	diagram	of	the	naCve	code	generaCon	process	
• 	The	flow	‘Templates,	Merge,	Assembly	File’	is	repeated	for	a	variety	of	files	and	types.	
• 	Some	of	these	file	types	are	the	entry	point	to	the	executable,	assembly	rouCnes	that	
process	ARM	excepCons,	templates	for	implementaCon	of	JVM	instrucCons,	etc.	
• 	This	naCve	generaCon	approach	is	very	straighaorward,	no	opCmizaCon	is	performed	to	
reduce	code	size,	number	of	operand	stack	accesses,	etc	

Locke Labs
for the common defense

18	April	2017	 New	Tools	for	STEM,	Cyber,	and	Makers	

Package	Structure		

•  Non-compliant	placeholder	
namespace	for	Stack	and	Heap	
errors	(jm.lang)	

•  User	applicaCon	code	
(lockelabs.examples)	

•  Support	code,	either	offline	or	on	
target	(eg,	
lockelabs.jm.annotaCons,	
lockelabs.jm.cpu,	
lockelabs.jm.memory.heap)	

•  Ahead	of	Cme	generaCon	of	
naCve	code	
(lockelabs.jm.naCvegen)	

•  ‘Drivers’	for	modules	on	the	SoC	
(lockelabs.jm.soc)	

17	

Locke Labs
for the common defense

18	April	2017	 New	Tools	for	STEM,	Cyber,	and	Makers	

Embedded	Code	Examples	

•  Java	main,	memory	allocaCon,	a	SoC	module,	
memory	access,	interrupts	

•  Memory	limit	implementaCons	

•  The	following	slides	illustrate	code	that	runs	
on	the	target.	

•  Informa3on	from	the	target	build	process	is	
included	with	these	slides	to	illustrate	what	
was	required	to	execute	the	Java	source	code.	

18	

Locke Labs
for the common defense

18	April	2017	 New	Tools	for	STEM,	Cyber,	and	Makers	

Java	main	-	IniCalizaCon	

19	

• 	Line	63	illustrates	allocaCon	and	iniCalizaCon	of	char	array.		Will	look	at	implementaCon	
in	following	slides.	
• 	Lines	73	–	79	illustrate	iniCalizing	modules	on	the	TI	SoC	(eg,	GPIO,	Timers,	Interrupt	
Controller).		Examine	Interrupt	Controller	iniCalizaCon	in	following	slides.	
• 	Line	84	starts	the	main	loop	of	the	main	method.		Illustrated	on	next	slide.	

Locke Labs
for the common defense

18	April	2017	 New	Tools	for	STEM,	Cyber,	and	Makers	

Java	main	-	Loop	

20	

• 	Line	88	reads	characters	and	carriage	return	entered	on	Mac	keyboard	and	transmiVed	
over	USB-to-TTL	to	UART	(aka	console	port)	on	Beagle	Bone	Black.	
• 	Lines	92	–	100	pass	the	current	‘command’	to	each	of	the	processCommand	staCc	
methods.	

Locke Labs
for the common defense

18	April	2017	 New	Tools	for	STEM,	Cyber,	and	Makers	

Memory	AllocaCon	(1	of	3)	

21	

• 	Code	above	is	from	user	main.	
• 	At	lep	are	the	disassembled	JVM	
instrucCons	for	the	allocaCon	of	the	char	
array	above.	
• 	On	the	next	slide,	the	current	JVM	
instrucCon	(newarray)	is	transformed	to	
naCve	code.	

Locke Labs
for the common defense

18	April	2017	 New	Tools	for	STEM,	Cyber,	and	Makers	

Memory	AllocaCon	(2	of	3)	

22	

• 	Code	below	only	runs	during	naCve	code	
generaCon.	
• 	Each	JVM	instrucCon	has	a	corresponding	template.		
At	lep	is	the	template	for	newarray.	
• 	During	code	generaCon,	template	is	merged	with	
relevant	data	from	BCEL	and	wriVen	to	current	asm	
file.		In	this	case,	the	HelloWorld.S	file.	
• 	Below,	the	variable	newArrayMethod	in	the	
template	at	lep	is	replaced	with	the	class	and	staCc	
method	(NewArray.newCharArray	on	line	296).		This	
method	is	shown	on	the	next	slide.	

Locke Labs
for the common defense

18	April	2017	 New	Tools	for	STEM,	Cyber,	and	Makers	

Memory	AllocaCon	(3	of	3)	

23	

• 	This	method	runs	only	on	the	target	and	allocates	char	arrays	from	the	heap	and	
iniCalizes	each	array	with	the	length	of	the	array.		The	presence	of	the	length	enables	
index	range	checking	to	verify	that	the	bounds	of	the	array	are	not	being	exceeded	by	
applicaCon	code.	

Locke Labs
for the common defense

18	April	2017	 New	Tools	for	STEM,	Cyber,	and	Makers	

SoC	Module	–	Interrupt	Controller	

24	

• 	Lines	75	–	77	at	lep	are	from	the	Java	
main	method.		One	of	the	methods,	
InterruptController.iniCalize,	is	shown	
below.	

• 	The	code	at	lep	calls	the		
DeviceMemory	class	to	write	the	
memory	mapped	control	registers	of	the	
InterruptController.	

Locke Labs
for the common defense

18	April	2017	 New	Tools	for	STEM,	Cyber,	and	Makers	

Memory	Access	(1	of	3)	

25	

• 	In	the	code	at	lep,	each	method	is	
decorated	with	the	
WholeMethodGeneraCon	annotaCon.	
• 	During	the	naCve	code	generaCon	
process,	any	method	with	this	annotaCon	
is	generated	by	reading	one	template	for	
the	enCre	method	instead	of	iteraCng	
through	the	JVM	instrucCons	generated	
by	the	Java	compiler	for	the	method.	
• 	An	example	of	this	process	is	shown	on	
the	next	slide.	

Locke Labs
for the common defense

18	April	2017	 New	Tools	for	STEM,	Cyber,	and	Makers	

Memory	Access	(2	of	3)	

26	

• 	Shown	at	line	57,	forMethod	
generates	the	naCve	assembly	
code	for	an	embedded	Java	source	
code	method.	
• 		If	the	Java	method	has	the	
WholeMethodGeneraCon	
annotaCon,	the	template	is	loaded	
and	merged	with	the	current	
context	(shown	in	lines	36	–	54).	
• 	The	result	is	wriVen	to	the	ARM	
assembly	file	being	generated	for	
the	current	Java	class.	

Locke Labs
for the common defense

18	April	2017	 New	Tools	for	STEM,	Cyber,	and	Makers	

Memory	Access	(3	of	3)	

27	

• 	The	template	at	lep	is	not	the	
whole	method	for	writeInt.	
• 	There	is	a	preMethod	
template	that	implements	
stack	overflow	checks	and	
iniCalizes	the	stack	frame	for	
the	current	method.	
• 	The	naCve	generaCon	process	
needs	some	refactoring.		You	
can	see	at	lep	that	each	
method	is	responsible	for	
popping	the	current	frame.	
• 	Template	variables	are	used	
here	as	well	so	that	I	can	easily	
change	register	convenCon	
when	needed.	

Locke Labs
for the common defense

18	April	2017	 New	Tools	for	STEM,	Cyber,	and	Makers	

Interrupts	(1	of	4)	

28	

During	startup	of	the	execuCon	environment,	
iniCalize	the	ARM	Vector	Base	Address	Register		

• 	On	the	ARM	MPU,	when	one	of	the	
excepCons	(Reset,	Data	Abort,	
Interrupt	from	Interrupt	Controller,	
etc)	occurs,	instrucCon	execuCon	
jumps	to	the	corresponding	handler	
(Reset	:	exc1,	Interrupt	:	exc7)	by	
loading	the	PC	with	the	address	of	
that	handler.	

Locke Labs
for the common defense

18	April	2017	 New	Tools	for	STEM,	Cyber,	and	Makers	

Interrupts	(2	of	4)	

29	

• 	The	file	shown	above,	exc.S,	is	the	‘template’	version.	
• 	Line	220	is	an	example	of	two	Velocity	‘variables’	in	this	template.	
• 	At	naCve	code	generaCon	Cme,	$className	and	$interruptJavaHandler	are	replaced	
with	their	actual	names	as	supplied	by	Java	source	code.		Example	of	this	on	the	next	
slide,	line	157	and	method	setMethodNames.	

• 	The	merged	version	of	
this	file,	which	is	part	of	
the	execuCon	
environment,	is	how	Java	
source	code	is	called	when	
an	interrupt	occurs.	

Locke Labs
for the common defense

18	April	2017	 New	Tools	for	STEM,	Cyber,	and	Makers	

Interrupts	(3	of	4)	

30	

• 	Both	of	the	files	above	are	relevant	only	during	naCve	code	generaCon.	
• 	The	file	on	the	lep	illustrates	reading	the	template	exc.S	and	generaCng	corresponding	
merged	ARM	assembly	language	file	exc.S.	

Locke Labs
for the common defense

18	April	2017	 New	Tools	for	STEM,	Cyber,	and	Makers	

Interrupts	(4	of	4)	

31	

• 	This	file	was	rearranged	to	
place	relevant	details	on	one	
screen.	
• 	This	illustrates	the	Java	source	
code	that	processes	an	
interrupt.	
• 	As	shown	in	previous	slides,	
the	ArmExcepConHandlers	
annotaCon	is	used	during	naCve	
code	generaCon	to	insert	the	
name	of	the	Java	source	
methods	to	call	from	the	
execuCon	environment.	
• 	The	method	interruptHandler	
is	the	method	invoked	when	the	
ARM	MPU	responds	to	the	
Interrupt	Controller	excepCon,	
the	exc7	label	on	a	previous	
slide.	

Locke Labs
for the common defense

18	April	2017	 New	Tools	for	STEM,	Cyber,	and	Makers	

Memory	Limits	–	Heap	(1	of	3)	

32	

• 	HeapManager.allocateBytes,	shown	above,	is	called	in	the	context	of	allocaCng	a	char	array.	
• 	On	line	121	above,	an	OutOfMemoryError	excepCon	is	thrown	when	a	heap	allocaCon	fails.	
• 	The	current	implementaCon	of	new	and	throwing	excepCons	is	only	a	proof	of	concept	that	
illustrates	Java	detecCon	and	halt	when	stack	or	heap	allocaCon	fails.	
• 	Current	implementaCons	of	new	and	throw	are	not	presented.	
• 	ImplementaCon	of	the	heapEndAddress	is	illustrated	on	following	slides.	

Locke Labs
for the common defense

18	April	2017	 New	Tools	for	STEM,	Cyber,	and	Makers	

Memory	Limits	–	Heap	(2	of	3)	

33	

• 	This	slide	and	the	following	illustrate	how	the	
heap	end	address	is	currently	integrated	with	Java	
source.	
• LLMAIN	shown	at	lep	is	the	entry	point	for	the	
executable	started	by	u-boot.	
• 	On	line	78,	the	end	address	of	the	heap	is	
staCcally	defined.	

• 	The	annotaCon	at	lep	is	uClized	to	
integrate	the	assembly	language	
heap	end	address	and	the	Java	
source	references	to	the	same	
address.	

Locke Labs
for the common defense

18	April	2017	 New	Tools	for	STEM,	Cyber,	and	Makers	

Memory	Limits	–	Heap	(3	of	3)	

34	

• 	During	class	init,	the	address	of	the	provided	label	is	stored	in	the	annotated	int.	
• 	This	is	implemented	with	a	‘special	case’	template	for	the	putstaCc	JVM	instrucCon.	
• 	This	special	case	drops	the	value	provided	by	the	class	file	and	instead	uses	the	
address	of	the	label	provided	by	the	annotaCon.	

Locke Labs
for the common defense

18	April	2017	 New	Tools	for	STEM,	Cyber,	and	Makers	

Discussion	

•  Working	towards	a	KickStarter	campaign	for	June	
2017	
–  Prep	and	release	all	code	as	open	source,	considering	
a	BSD	4-clause	license	

– Write	a	book	with	2	general	topics	
•  Step	by	step	instrucCons	for	novice	to	reproduce	the	
capabiliCes	described	here	

•  Detailed	descripCon	of	design	and	implementaCon	
–  IdenCfy	a	stretch	goal	of	a	Java	implementaCon	of	
required	GNU	binuCls.		Primarily,	as,	ld,	objcopy,	
objdump.		Believe	these	would	have	to	be	released	as	
GPL.	

•  QuesCons	

35	

Locke Labs
for the common defense

18	April	2017	 New	Tools	for	STEM,	Cyber,	and	Makers	

Backup	Slides	

36	

Locke Labs
for the common defense

18	April	2017	 New	Tools	for	STEM,	Cyber,	and	Makers	

Classes	Java	main	doesn’t	depend	on?	

37	

• 	InterruptHandlers	
• 	HeapManager	
• 	HeapMemory	
• 	NewArray	

NaCve	code	generaCon	visits	all	dependencies	of	Java	main	
and	generates	corresponding	naCve	code.		The	classes	
above	don’t	appear	as	dependencies	and	therefore	have	to	
be	included	manually	in	the	list	of	classes	to	generate.	

Locke Labs
for the common defense

18	April	2017	 New	Tools	for	STEM,	Cyber,	and	Makers	

How	Much	‘Plain’	Assembly?	

38	

• 	LLMAIN.S	–	defines	the	method	started	by	u-boot.	
• 	exc.S	–	defines	the	excepCon	vector	table	and	iniCal	service	rouCnes.	
• 	jvmMain.S	–	invokes	methods	to	iniCalize	staCc	data	of	classes	and	invokes	Java	
main	method.	
• 	Files	to	read	and	write	system	control	/	status	registers	:	flush	caches	to	
implement	se_ng	breakpoint,	address	of	instrucCon	fault,	read	and	write	int	
values	to	memory,	etc.	

Locke Labs
for the common defense

18	April	2017	 New	Tools	for	STEM,	Cyber,	and	Makers	

Register	ConvenCon	

39	

• 	Some	of	the	above	are	noConal	at	this	point.	
• 	R0-R3,	R4,	R5	are	the	ones	listed	most	frequently	in	the	examples.	
• 	R0-R3	referenced	as	ocReg1	–	ocReg3	in	templates	(oc	=	op	code)	
• 	R4,	R5,	and	LR	are	currently	pushed	to	stack	between	calls.	

Locke Labs
for the common defense

18	April	2017	 New	Tools	for	STEM,	Cyber,	and	Makers	

NoConal	Stack	Contents	

40	

