QCon San Francisco 2018

Shared by Ken Aung
November 20, 2018

QCon SF by InfoQ

* Bleeding-edge Software Developer Conference for the Enterprise
e 18 editorial tracks across 3 days
e 140+ practitioner speakers

Monday, 5 November Tuesday, 6 November Wednesday, 7 November
Microservices / Serverless Patterns Architectures You've Always Applied Al & Machine Learning
& Practices Wondered About Applied machine learning lessons for SWEs,
Evolving, observing, persisting, and building Next-gen architectures from the most including tech around TensorFlow, TPUs,
modern microservices admired companies in software, such as Keras, PyTorch, & more

Netflix, Google, Facebook, Twitter, & more

Practices of DevOps & Lean 21st Century Languages Production Readiness: Building
Thinking Resilient Systems

Practical approaches using DevOps & Lean Go-lang, Swift, Kotlin, and more. More than just building software, building

Lessons learned from languages like Rust,

Thinking deployable production ready software

Tracks

Modern CS in the Real World

Thoughts pushing software forward,
including consensus, CRDT's, formal
methods, & probabilistic programming

Modern Operating Systems

Applied, practical, & real-world deep-dive
into industry adoption of OS, containers and
virtualization, including Linux on Windows,...

Optimizing You: Human Skills for
Individuals

Better teams start with a better self. Learn
practical skills for IC

Bare Knuckle Performance

Killing latency and getting the most out of
your hardware

Socially Conscious Software

Building socially responsible software that
protects users privacy & safety

Delivering on the Promise of
Containers

Runtime containers, libraries, and services
that power microservices

Security: Lessons Attacking &
Defending

Security from the defender's AND the
attacker's point of view

Future of Human Computer
Interaction

IoT, voice, mobile: Interfaces pushing the
boundary of what we consider to be the
interface

Enterprise Languages

Workhorse languages found in modern
enterprises. Expect Java, .NET, & Node in this
track

InfoQ

“Accelerating the software side of human technological progress”
“Stay ahead of the adoption curve”

Technology Adoption Curve - May 2018

Al and Machine Stream DevOps Java
Learning Processing

Microservices .NET
Blockchain Kubernetes
Chaos FaaS (Lambda
Engineering etc.)

WebAssembly CQRS

Rust Swift <

https://www.infoq.com/qcon/

References

Java

* https://www.infog.com/java

QCon

e https://www.infog.com/gcon/

* https://qconsf.com/volunteers

https://www.infoq.com/qcon/
https://www.infoq.com/qcon/
https://www.infoq.com/qcon/
https://www.infoq.com/qcon/
https://www.infoq.com/qcon/
https://www.infoq.com/qcon/
https://www.infoq.com/qcon/
https://www.infoq.com/qcon/
https://www.infoq.com/qcon/
https://www.infoq.com/qcon/
https://www.infoq.com/qcon/
https://www.infoq.com/qcon/

Why we built an Evolutionary
Architecture

S r e NETFLIX

everywhere

Download & Go

FIND SOMETHING TO COWNLOAD >

oK

Q12016

Q2 2016

Q3 2016

Q4 2016

NETFLIX

O Rollbacks per month

s

O Deployments per week

Increase in
Rollbacks

a

Decrease in
deployments

Previous Architecture

API Service
Sign-up

Signup APl =

-& API Proxy
-~ % Service

Content
Discovery

Playback

-‘-"-FJ- fzf i _.] ’ .
Domain specific

Microservices

Devices < Services hosted in AWS =

Identity

NETFLIX

Start with WHY: Ask why your
service exists

Lead the Internet TV revolution to
entertain billions of people across the
world

Maximize customer engagement
from signup to streaming

@\ Enable acquisition, discovery,
¥ playback functionality 24/7

API Identity: Deliver Acquisition,
Discovery and Playback functions
with high availability

Single Responsibility Principle: Be wary
of multiple-identities rolled up into a
single service

Previous Architecture Current Architecture

Play AP

One API Service API Service Per
function

Play API Identity: Orchestrate
Playback Lifecycle with stable
abstractions

&) Decide best
s | playback
o 5 experience

Authorize
playback
experience

- Y 3 D
N \ ’ s
N \ ’ S

. F ’ .
. ' 5 -
N \ -

3 | £ P
\ i =
h) ’ -
N \ 2 P
N \ -
N \ ’ e
N ’ -
. \ P

Track events
to measure
, playback

Devices experience

Guiding Principle: We believe in a simple
singular identity for our services. The
identity relates to and complements the
identities of the company, organization,
team and its peer services

NETFLIX

NETFLIX

“Some decisions are consequential and irreversible or nearly
irreversible — one-way doors —and these decisions must be made
methodically, carefully, slowly, with great deliberation and
consultation [...] We can call these Type 1 decisions...”

“...But most decisions aren’t like that —they are changeable,
reversible —they’re two-way doors. If you’ve made a suboptimal
Type 2 decision, you don’t have to live with the consequences for
thatlong [...] Type 2 decisions can and should be made quickly by
high judgment individuals or small groups.”

Three Type 1 Decisions to Consider Quote from Jeff Bezos

§ \._‘-“;—
T

.
. .

=

Appropriate Synchronous & Data Architecture
Coupling Asynchronous

)
—
=

Two types of Shared Libraries

- Client 1
L Utilities) ('en

(Client 2

i

Shared : 7
Libraries with § L cache] - _j
common (m::) :
functions Client 3
L Metrics] Client Libraries
- used for
inter-service
Play APl Service J communications Binary coupling => Distributed
l Utilities !g— -------------------------- -7{ Utilities !
Hundreds of
Servicel shared libraries Service2
(11 !
The evils of too much coupling between \ Spanningservices
N across network K

A
v, boundaries

services are far worse than the problems

caused by code duplication” [[D"'“es j

Service3

Previous Architecture

- Sam Newman (Building
Microservices)

2) Operational Coupling

_—e— e e = == ===,

“Operational Coupling” might be an
ok choice, if some services/teams are
not yet ready to own and operate a
highly available service.

/
|
Play API Service |
|

sl

Playback

Playback Decision
Service

Decision J_’

|

|

|

Client 1
I

I

A

P el

Clients with heavy Fallbacks

Operational Coupling impacts

Availability _'_'___‘___'__‘_,__,—’_r— — —

f ™ %
Requests Per %

Second of API Increase in

Many of the client

libraries had the Service Latencies
potential to bring down from the API Execution of

Play Decision
Client

Play API Service

MY SRR T T T T T T T T T T T T
Previous Architecture 00:46 00:48 00:50 00:52 00:54 00:56 00:58 01:00 01:02 01:04 01:06 01:08 01:10 01:12 ©01:14

Requirements

Operationally “thin” Clients No or limited shared libraries

Auto-generated clients for Bi-Directional Communication E
Polyglot support

REST vs RPC

e At Netflix, most use-cases were modelled as Request/Response

o REST was a simple and easy way of communicating between services; so
choice of REST was more incidental rather than intentional
e Most of the services were not following RESTful principles.
o The URL didn’t represent a unique resource, instead the parameters passed
in the call determined the response - effectively made them a RPC call

e So we were agnostic to REST vs RPC as long as it meets our requirements

Previous Architecture

Play APl Service

)

U

)

7

-)

1) Operationally

Playback
/ Decisions
4
REST/
HTTPT & playback
0 Authorize
\1
\ Playback
Events

)

Coupled Clients

2) High Binary Coupling

3) Only Java

4) Unidirectional communication

Current Architecture

Play APl Service

SR

st

 Sveowam—

Playback
Decisions

)

1,

gRPC/
HTTP2

 avasorm—

: Playback
: Authorize

- /

i

Playback
Events

)

1) Minimal Operational Coupling
2) Limited Binary Coupling

3) Beyond Java

4) Beyond Request/ Response

Type 1 Decision: Appropriate Coupling

Consider “thin” auto-generated clients
with bi-directional communication and
mMinimize code reuse across service
boundaries

For Type 2 decisions, choose a path,
experiment and iterate

Guiding Principle: Identify your Type 1
and Type 2 decisions; Spend 80% of your
time debating and aligning on Type 1
Decisions

NETFLIX

- . Evolvability

NETFLIX

£k K

An Evolutionary Architecture
supports guided and incremental
change as first principle among
multiple dimensions

- ThoughtWorks

Choosing a microservices architecture
with appropriate coupling allows us to
evolve across multiple dimensions

How evolvable are the Type 1 decisions

Previous Current
Change Play API Architecture Architecture
Asynchronous?
Known
Unknowns Polyglot services?
Additional Data
Sources?

Potential Type 1 decisions in the
future?

EVTITE Current
Change Play APl [N opvms Architecture

Containers?

And we fully expect that there will
be Unknown Unknowns

As we evolve, how to ensure we are
not breaking our original goals?

Use Fitness Functions to guide
change

High Availability Low Latency

Evolvability Simplicity
Scalable Reliability
High
Continuous
Integration Throughput

Observabili Developer
i Productivity

Why Scalability over Throughput?

Increase in
Errors due to
cache
warming

New
instances
were added

N\

Guiding Principle: Define Fitness
functions to act as your guide for
architectural evolution

Previous Architecture Current Architecture

Singular Identities
Multiple Identities

Operational Isolation
Operational Coupling

No Binary Coupling

Binary Coupling

Asynchronous

communication
Synchronous

communication
Beyond Java

Only Java

Explicit Data
Architecture
Data Monolith

Guided Fitness
Functions

Full Cycle Developers @ Netflix by Greg Burrell

The Full Cycle Developer

Developer

Q.
‘

If You Don’t Know Where You’re Going, It Doesn’t

Matter How Fast You Get There
by Jez Humble, Nicole Forsgren

Accelerate:
State of DevOps

Strategies for a New Economy

G ElectricCloud B Microsoft Azure Pivotal ~ dWS

hnalog

Kotlin: Write Once, Run (Actually) Everywhere

by Jake Wharton
Android i0S Web
<,
=5 View Models
Java
Presenters
‘ (Js Client Backend
Android i0S Web Server / APt
l 0 Business Logic
Models

Building Production-Ready Applications
by Michael Kehoe

Stability & Reliability

Scalabllity & Performance
Fault Tolerance and DR
Monitoring

Documentation

. I

Patterns of Streaming Applications
by Monal Daxini

Patterns Summary
FUNCTIONAL NON-FUNCTIONAL
Configurable Router 6. Elastic Dev Interface
Script UDF Component 7. Stream Processing Platform
The Enricher 8. Rewind & Restatement

The Co-process Joiner
Fvent-Sourced Materialized View

Human Centric Machine Learning Infrastructure
@Netflix by Ville Tuulos

ML Wrapping: Metaflow MI

models |ML Libraries: R, XGBoost, TF etc.

prototyping |Notebooks: Nteract ﬁ\l
Job Scheduler: Meson 8 X Airflow
compute - |compute Resources: Titus m kubernetes

Query Engine: Spark Spar

data |Data Lake: S3 S3

Atomist - A Platform Built For Delivering Modern
Cloud Native Application

Q&A

* What is gRPC?

* “gRPCis a modern, open source remote procedure call (RPC) framework that can run
anywhere. It enables client and server applications to communicate transparently, and makes
it easier to build connected systems.”

 “The main usage scenarios:

* Low latency, highly scalable, distributed systems.

* Developing mobile clients which are communicating to a cloud server.

* Designing a new protocol that needs to be accurate, efficient and language independent.

* Layered design to enable extension eg. authentication, load balancing, logging and monitoring etc.”

. zlgllsﬁ/lt)lgnguage is used in developing Atomist’s Software Delivery Machine

e “..SDMis in TypeScript (or JavaScript works too), and comes with a framework designed for
software delivery and development automation. Write functions to make decisions or take
action, with access to all the code plus the context of the push or build or issue event. All of
this is open source.”

https://grpc.io/faq/
https://grpc.io/faq/
https://docs.atomist.com/
https://docs.atomist.com/
https://docs.atomist.com/
https://docs.atomist.com/
https://docs.atomist.com/

AN NI N N N N NN NN

ResMed Open Role!!!

Check them out at: careers.resmed.com

Sr. V&V Engineer

Agile Project Manager

Senior Manager, Technical Product Manager
Systems Analyst

Manager, Platform Engineer

Software Engineer

Associate Software Engineer

Senior Software Development Engineer in Test
Associate Software Development Engineer in Test
Project Manager, Advanced Analytics

And many more...

.

Thank You!

