
Towards a more RESTful
world
Anurup Joseph
Elegan Consulting

About Anurup
coding professionally since 1994

working with Java since 1996

different industries/sectors/geographies

loves to explore

enjoys fostering Agile development and CI/CD

volunteer to teach Java to kids

About You

CORBA, IIOP, SOAP? REST?

XML? JSON?

Document and test your web services?

Agenda
Interprocess
Communication

Communication
Mechanisms

Message formats

Documentation & Testing

Demo

Interprocess Communication

Interprocess
Communication

Services consume other
services

Access via web
protocols = Web
Services

Service chaining

SOAP Part 1
originally acronym for Simple Object Access Protocol

now, just SOAP

developed in 1998 at Microsoft for service communication

simpler than an earlier more complex protocol

SOAP Faults describe errors

tools to generate client code

SOAP Part 2
WSDL

acronym for Web Service Definition Language

describes API

XSD

acronym for XML Schema Document

defines message formats

XML
acronym for eXtensible Markup Language

message format that is the basis of XSDs and WSDLs

now considered verbose

JSON

acronym for JavaScript Object Notation

invented by Douglas Crockford, now Senior JavaScript
Architect at PayPal

derived from JavaScript, but is language-independent
message format

considered less verbose than XML

XML -> JSON
XML

<student>

 <name>John Doe</name>

 <age>11</age>

 <grade>5</grade>

 </student>

JSON

{

 “name”: “John Doe”,

 “age”: 11,

 “grade”: 5

}

REST

Dr. Roy Fielding
a principal author of HTTP

co-founder of Apache web server (httpd)

former Chair of Apache Software Foundation

now Senior Principal Scientist at Adobe

PhD dissertation: Architectural Styles and the Design of
Network-based Software Architectures

introduced REST

REST

acronym for REpresentational State Transfer

stateless web service communication protocol

services located by URI’s; communication via HTTP
operations

less verbose, industry standard

CRUD via HTTP
acronym for Create, Read, Update, Delete

match to HTTP operations

Create = POST

Read = GET

Update = PUT (complete)/PATCH (partial)

Delete = DELETE

HTTP status codes used to convey result

Best practices
http://www.restapitutorial.com/lessons/httpmethods.html

GET operations should be idempotent

any state change on server should be POST, PUT,
PATCH, or DELETE

http://www.restapitutorial.com/httpstatuscodes.html

only return output relevant to client for brevity and security

when possible, use HTTP status codes to convey result

http://www.restapitutorial.com/lessons/httpmethods.html
http://www.restapitutorial.com/httpstatuscodes.html

Examples

Create
POST /student/12345 HTTP/1.1
Content-Type: application/json
Accept: application/json
{
 “name”: “John Doe”,
 “age”: 11,
 “grade”: 5
} 

HTTP/1.1 201 CREATED
Date: Tue, 19 Sep 2017
17:05:35GMT
Content-Type: application/json
{
 “createdOn”:
“2017-09-19T17:05:34.211Z”,
 “updatedOn”:
“2017-09-19T17:05:34.211Z”,
 “name”: “John Doe”,
 “age”: 11,
 “grade”: 5
}

Read
GET /student/12345 HTTP/1.1
Accept: application/json

HTTP/1.1 200 OK
Date: Tue, 19 Sep 2017
17:06:35GMT
Content-Type: application/json
{
 “createdOn”:
“2017-09-19T17:05:34.211Z”,
 “updatedOn”:
“2017-09-19T17:05:34.211Z”,
 “name”: “John Doe”,
 “age”: 11,
 “grade”: 5
}

Update (entire)
PUT /student/12345 HTTP/1.1
Content-Type: application/json
Accept: application/json
{
 “name”: “John Q. Doe”,
 “age”: 12,
 “grade”: 6
}

HTTP/1.1 200 OK
Date: Tue, 19 Sep 2017
17:07:35GMT
Content-Type: application/json
{
 “createdOn”:
“2017-09-19T17:05:34.211Z”,
 “updatedOn”:
“2017-09-19T17:07:34.211Z”,
 “name”: “John Q. Doe”,
 “age”: 12,
 “grade”: 6
}

Update (partial)
PATCH /student/12345 HTTP/1.1
Content-Type: application/json
Accept: application/json
{
 “nickName”: “Johnny”
}

HTTP/1.1 200 OK
Date: Tue, 19 Sep 2017
17:08:35GMT
Content-Type: application/json
{
 “createdOn”:
“2017-09-19T17:05:34.211Z”,
 “updatedOn”:
“2017-09-19T17:08:34.211Z”,
 “name”: “John R. Doe”,
 “age”: 12,
 “grade”: 6,
 “nickName”: “Johnny”
}

Delete
DELETE /student/12345 HTTP/1.1
Accept: application/json

HTTP/1.1 204 NO CONTENT
Date: Tue, 19 Sep 2017
17:09:35GMT

Errors: Create
POST /student/12345 HTTP/1.1
Content-Type: application/json
Accept: application/json
{
 “name”: “John Doe”,
 “age”: 11,
 “grade”: 5
} 

HTTP/1.1 409 CONFLICT
Date: Tue, 19 Sep 2017
17:10:35GMT

Errors: Read
GET /student/no_such HTTP/1.1
Content-Type: application/json
Accept: application/json

HTTP/1.1 404 NOT FOUND
Date: Tue, 19 Sep 2017
17:11:35GMT

Errors: Delete
DELETE /student/12345 HTTP/1.1
Accept: application/json

HTTP/1.1 404 NOT FOUND
Date: Tue, 19 Sep 2017
17:12:35GMT

RESTful + JSON
web services consume HTTP operations

web services produce HTTP status codes whenever
possible

simple message format

communicate concisely

more efficient communication; enhances scalability

Documentation
 & Testing

Swagger/OpenAPI
enables documenting & testing
REST APIs

started as side project at
Wordnik in 2010

bought by SmartBear in 2015,
renamed as OpenAPI

https://swagger.io/

language and platform-agnostic

code-generation possible

https://swagger.io/

SpringFox

automatic API documentation for Java services built
with Spring

based on Swagger/OpenAPI

annotation-based configuration

demo

