Continuous Improvement
via
Continuous Integration

Anurup Josepn
“legan Gonsulting




About Anurup

® - coding professionally since 1994

x - Wworking with Java since 1996

® - different industries/sectors/geographies
® - [oves to explore

® - enjoys fostering Agile development and Kaizen



About You

®x - Agile”? Waterfall? Other? Chaos?
x - Continuous Integration? Continuous Delivery?

x - Continuous Improvement pProcess?



Kalzen

- “change for the

better”
- Gontin
Improve

UOUS

TE

- Inspired T

gl

SRS




Continuous Improvement
Importance

x - reduce tech debt

® - |learn of emergent discoveries/vulnerabilities
® - [dentify and fix new Issues

x - feam education

®x - Gl teams yield competitive advantages



Continuous Integration
Importance

= - non-trivial software consists of disparate components
® - components must be integrated

® - [ntegration points tend to cause ISsues

x - Continuous Integration discovers issues early

» - carly discovery = lower cost In time and money



But How?



Manual Review

® - human inspection of all existing and new code
® - requires varied expertise

® - slow, boring, error-prone

x - difficult with distributed teams

® - human time gets more expensive



Manual 1o0ls

= - static analysis software (CLI or IDE)

= - regularly updated with new Inspections

= - never gets bored or sloppy

®x - must remember to run them — upon every change by anyone
® - tends to e episodic

® - NO tool Is as good as expert human inspectors

= - machine time gets cheaper



Automatic [ools

® - [ntegrate static analysis software with Continuous Integration
® - cach check-in/bulld results In full iINspection
® - team Informed of new Issues

» - metrics tracked over time: “If you can’t measure it, you can't
manage It.”

® - next best thing to human experts always reviewing everything

® - machine time gets cheaper



TMTOWIDI

= - many tools available

x - Will present those that
worked for my teams

= - will not go In-depth
into configuration
Specifics




Some [ools to Try

x - Maven & Jenkins
x - FIndBugs & PMD
= - GPD

x - Cobertura

® - Checkstyle

® - Open lasks



VWorktlow Part

= - checkin triggers Jenkins to run Maven build

x - Maven build runs tests

® - Maven build runs static analyzer via Maven plugins
» - static analyzers generate prioritized reports

® - Jenkins plugins present reports graphically



VWorkflow Part 2

® - feam monitors analysis reports and emails

® - New Issues fixed In lteration

® - extant issues result in Stories/Defects in Backlog

x - feam continually pulls from Backlog in priority order
® - |[eads/management monitors quality metrics

» - Retrospectives result In learnings

® - becoming a learning/improving organization



Fun with System.exit()



(E 2 EEEEEYYEY YY)
NI N P
Y0000

o
058,
)).J)
<J")J'.J
0 0 o
o oS
o
)
)

o8
P

o5

J)

B,
p |

o
>
o
Y=

it
.,:J

3
3

0,0,
T4

1333
o8,
55

o

»
8.6 0 0

.

sSsts
J)JJ
5 ®
)

e
o8,
J3.5

) o

ot
333
Pyl 34
oS0
23
s

P <]

)
)
P |

X
Py

s
3
3

S
e
55
e,

J
>
J

. ®
S
oSt
o5
“)J
3 "’ -
<3

'0
i
I
)

5
<3
J-)J)

)

s
s
5,
gy
o33!
@
))
%)

5252,
PP
P
8,
0.8
P P
A
) |
) |






TPS Principles

x - Continuous Improvement

» - Respect for People

x - Develop Long-term Vision (strategy)

®x - Focus on Short-term Process (tactics)
® - Grow People

® - Create Learning & Improving Organization



| SD Principles

= - climinate waste

x - Continuous Improvement to enhance learning
» - decide as late as possible

= - deliver early and iteratively

= - empower the team

x - Gontinuous Integration builds integrity

®x - see the whole: “Think Big, Act Small, Fail Fast, Learn Rapidly”



Agile Principles

- Customer satisfaction by early and continuous delivery of valuable software

- Welcome changing requirements, even in late development

- Working software is delivered frequently (weeks rather than months)

- Close, daily cooperation between business people and developers

- Projects are built around motivated individuals, who should be trusted

- Face-to-face conversation is the best form of communication (co-location)

- Working software is the principal measure of progress

- Sustainable development, able to maintain a constant pace

- Continuous attention to technical excellence and good design

- Simplicity—the art of maximizing the amount of work not done—is essential

- Best architectures, requirements, and designs emerge from self-organizing teams

- Regularly, the team reflects on how to become more effective, and adjusts accordingly



