
© 2019 IBM Corporation

Problem Determination
Java Heapdumps and OOMs

May 21, 2019
Kevin Grigorenko
IBM WAS SWAT Team
kevin.grigorenko@us.ibm.com

mailto:kevin.grigorenko@us.ibm.com

© 2019 IBM CorporationPage 2

Agenda

 IBM Memory Analyzer Tool

 Heapdump Theory

 OutOfMemory Analysis

 Object Query Language

 IBM Extensions for Memory Analyzer

 Interactive Diagnostic Data Explorer (IDDE)

© 2019 IBM CorporationPage 3

Memory Analyzer Tool (MAT)

 MAT is an open source project originally donated to Eclipse by SAP. It was designed for
memory leak detection and footprint analysis, but is now used more broadly.

 Resources:
– MAT Project Website: http://eclipse.org/mat/
– Standalone download (32- or 64-bit) or update site for Eclipse/RAD:

http://eclipse.org/mat/downloads.php
– MAT Forum: http://www.eclipse.org/forums/index.php?t=thread&frm_id=186
– Reporting a bug: https://bugs.eclipse.org/bugs/enter_bug.cgi?product=MAT
– Source code (EPL License, instructions):

http://dev.eclipse.org/svnroot/tools/org.eclipse.mat/trunk/

http://www.ibm.com/developerworks/opensource/library/j-memoryanalyzer/index.html
http://eclipse.org/mat/
http://eclipse.org/mat/downloads.php
http://www.eclipse.org/forums/index.php?t=thread&frm_id=186
https://bugs.eclipse.org/bugs/enter_bug.cgi?product=MAT
http://dev.eclipse.org/svnroot/tools/org.eclipse.mat/trunk/features/org.eclipse.mat.all.feature/license.html
http://wiki.eclipse.org/index.php?title=MemoryAnalyzer/Contributor_Reference#Setup
http://dev.eclipse.org/svnroot/tools/org.eclipse.mat/trunk/

© 2019 IBM CorporationPage 4

IBM & MAT

 MAT initially only supported HPROF heapdumps from HotSpot (Sun/Oracle) based JVMs.

 The IBM Java team became a participant in the Eclipse MAT open source project and added support
for IBM JVM based dumps (PHD and system dump), however this requires installing the
IBM DTFJ plugin adapter.

 IBM ships a version of MAT which already includes this plugin. This is called the
IBM Monitoring and Diagnostic Tools for Java – Memory Analyzer Tool.

 This tool is available in the IBM Support Assistant (ISA) and fully supported by IBM (i.e. you can open
a PMR on bugs with the tool).

 The ISA platform only runs in 32-bit mode. The best way to get around this:
– Download the standalone MAT build from eclipse.org: http://eclipse.org/mat/downloads.php
– Click Help > Install New Software > In the "Work with:" textbox at the top, paste:

http://download.boulder.ibm.com/ibmdl/pub/software/isa/isa410/production/
And press Enter (This will take some time to load)

– Install label.component.tools.jvm > Diagnostic Tool Framework for Java
– While you're there, also check all the IBM Extensions for Memory Analyzer* plugins

http://www.ibm.com/developerworks/java/jdk/tools/dtfj.html
http://www.ibm.com/developerworks/java/jdk/tools/memoryanalyzer/
https://www14.software.ibm.com/webapp/iwm/web/preLogin.do?source=isa&S_PKG=v412-wb
http://eclipse.org/mat/downloads.php

© 2019 IBM CorporationPage 5

IBM Extensions for Memory Analyzer (IEMA)

 IBM provides the free IBM Extensions for Memory Analyzer (IEMA) that provide product
specific knowledge:

– Generic Java applications
– WebSphere Application Server
– WebSphere eXtreme Scale
– CICS Transaction Gateway
– ...and more to come

 IEMA also provides “always on” extensions and status reports of aspects of the
applications.

 IEMA is covered later in the slides.

https://www.ibm.com/developerworks/java/jdk/tools/iema/

© 2019 IBM CorporationPage 6

Heapdumps, System dumps, Core dumps

 A system dump, or core dump, is a file
created by an operating system which is a
snapshot of the entire address space

– Javacores should be referred to as
javadumps to avoid confusion with system
core dumps

 A heapdump is a file created by the JVM
which is a snapshot of the Java heap

 An IBM heapdump does not contain
memory contents (Strings, integers,
variable names, etc.), but a system dump
(or HPROF dump) does

© 2019 IBM CorporationPage 7

Comparison of Dump Data Availability

Dump
Format

Approx.
Size on
Disk

Objects,
Classes,
Class
Loaders

Thread
Details

Field
Names

Field and
Array Refs

Primitive
Fields

Primitive
Array
Contents

Accurate
GC Roots

Native
Memory
and
Threads

IBM PHD 20% of
Java heap
size 

with
Javacore      

HPROF Java heap
size        

System
dump

Java heap
size + 30%        

© 2019 IBM CorporationPage 8

Getting a Portable Heapdump (PHD - IBM JVM)

Automatically produced on OOM (up to 4 times)
–Control with -Xdump or -Xtrace

• http://publib.boulder.ibm.com/infocenter/javasdk/v6r0/topic/com.ibm.java.doc.diagnostics.60/diag/tools/dumpagents_syntax.html

• ‑Xdump:heap:events=systhrow,filter=java/lang/
OutOfMemoryError,range=1..4,request=exclusive+compact+prepwalk

 Use -Xdump:heap:user to take one on kill -3/Ctrl+Break

 System dump → jextract → jdmpview → heapdump

 Wsadmin (Mbean has a limit, can be increased):
– AdminControl.invoke(AdminControl.completeObjectName("type=JVM,process=ser

ver1,*"), "generateHeapDump")

 Programmatically with com.ibm.jvm.Dump.HeapDump()

 On Java < 5 with JAVA_DUMP_OPTS envar

 From within MAT → File → Acquire Heap Dump

http://publib.boulder.ibm.com/infocenter/javasdk/v6r0/topic/com.ibm.java.doc.diagnostics.60/diag/tools/dumpagents_syntax.html
http://publib.boulder.ibm.com/infocenter/javasdk/v1r4m2/topic/com.ibm.java.doc.diagnostics.142/html/jvm_dump_initiation.html?path=0_5_3#jvm_dump_initiation

© 2019 IBM CorporationPage 9

Getting a Heapdump (HPROF - Oracle JVM)

 Automatically produced on OOM with -XX:+HeapDumpOnOutOfMemoryError
– http://www-01.ibm.com/support/docview.wss?uid=swg21242314
– On recent releases, one heapdump per JVM run; previously, no limit.

 Ctrl+Break or kill -3 with -XX:+HeapDumpOnCtrlBreak

 Java 5: jmap -dump:format=b

 Java 6: jmap -dumpformat=b,file=<filename> <pid>

 Jconsole with HotSpotDiagnostic Mbean dumpHeap

 System dump (e.g. gcore) and extract with jmap

 http://wiki.eclipse.org/index.php/MemoryAnalyzer#Getting_a_Heap_Dump

http://www-01.ibm.com/support/docview.wss?uid=swg21242314
http://wiki.eclipse.org/index.php/MemoryAnalyzer#Getting_a_Heap_Dump

© 2019 IBM CorporationPage 10

Getting a System Dump

 Ensure proper ulimits! AIX, Linux

 Automatically produced on a crash

 Create a system dump on OOM instead of phd:
• -Xdump:heap:none

-Xdump:java+system:events=systhrow,filter=java/lang/OutOfMemoryError,range=1..4,request=
exclusive+prepwalk

 Wsadmin:
AdminControl.invoke(AdminControl.completeObjectName("type=JVM,process=server1,*"),
"generateSystemDump")

 Programmatically with com.ibm.jvm.Dump.SystemDump()

 AIX=gencore, Linux=gcore, z/OS=SVCDUMP, Windows=userdump.exe

 Then run: <WAS>/java/jre/bin/jextract $DUMP and load the ZIP in MAT

 System dumps usually compress to 25% of original size.

http://publib.boulder.ibm.com/infocenter/javasdk/v6r0/topic/com.ibm.java.doc.diagnostics.60/diag/problem_determination/aix_setup_full_core.html
http://publib.boulder.ibm.com/infocenter/javasdk/v6r0/topic/com.ibm.java.doc.diagnostics.60/diag/problem_determination/linux_setup.html

© 2019 IBM CorporationPage 11

Getting a System Dump (Continued)

 IBM Health Center can acquire a dump

 The trace engine allows system and PHD dumps to be triggered on method entry or
exit. This produces a system dump when the Example.trigger() method is called

– ‑Xtrace:maximal=mt,trigger=method{com/ibm/example/Example.trigger,sysdump}

 Set a range to take dumps between the first and 5th method invocations:
– ‑Xtrace:maximal=mt,trigger=method{com/ibm/example/

Example.trigger,sysdump,,5,1}

 Jextract is no longer needed with DDR in Java 5 >= SR12 (WAS >= 6.1.0.33), Java 6
>= SR9 (WAS >= 7.0.0.15), Java 626 (WAS 8)

 The strategic direction is system dumps. In WAS 8.0.0.2, one is created on the first
OOM.

 Ensure enough physical memory for best performance.

http://www.ibm.com/developerworks/java/jdk/tools/healthcenter/
http://publib.boulder.ibm.com/infocenter/javasdk/v6r0/topic/com.ibm.java.doc.diagnostics.60/diag/tools/trace_options_trigger.html

© 2019 IBM CorporationPage 12

Getting a System Dump (Linux)

 “Linux does not provide an operating system API for generating a system dump from a
running process. The JVM produces system dumps on Linux by using the fork() API to
start an identical process to the parent JVM process. The JVM then generates a
SIGSEGV signal in the child process. The SIGSEGV signal causes Linux to create a
system dump for the child process. The parent JVM processes and renames the
system dump, as required, by the -Xdump options, and might add additional data into
the dump file.

The system dump for the child process contains an exact copy of the memory areas
used in the parent. The SDK dump viewer can obtain information about the Java
threads, classes, and heap from the system dump. However, the dump viewer, and
other system dump debuggers show only the single native thread that was running in
the child process.”

– http://publib.boulder.ibm.com/infocenter/java7sdk/v7r0/topic/com.ibm.java.lnx.70.d
oc/diag/tools/dumpagents_platform_nonzos.html

http://publib.boulder.ibm.com/infocenter/java7sdk/v7r0/topic/com.ibm.java.lnx.70.doc/diag/tools/dumpagents_platform_nonzos.html
http://publib.boulder.ibm.com/infocenter/java7sdk/v7r0/topic/com.ibm.java.lnx.70.doc/diag/tools/dumpagents_platform_nonzos.html

© 2019 IBM CorporationPage 13

Getting a System Dump (Linux)

 The Linux kernel.core_pattern setting (available in Linux 2.5 and later kernels) can be
used to specify the name and path for system dumps.

– However, this may interfere with the JVM's core naming scheme.

 When getting a system dump manually on Linux using the gcore command, by
default, the produced core will be named core.$PID.

 Because the core was not created by the JVM itself, MAT will not know when the core
was created. Therefore, it is recommended to rename the core with the timestamp in
the name:

– #!/bin/sh
PID=$1
SEQ=$2
PREFIX=$3
if [-z "$PREFIX"]; then
 PREFIX="./"
fi
if [-z "$SEQ"]; then
 SEQ=1
fi
COREFILE="${PREFIX}core.`date +%Y%m%d.%H%M%S`.$PID.000$SEQ.dmp"
gcore -o $COREFILE $PID
echo "Renaming core file. Your process has now continued running."
gcore adds the PID to the end of the file, so just remove that
mv $COREFILE.$PID $COREFILE



© 2019 IBM CorporationPage 14

-Xdump Agents

 Exceptions can also be filtered on throwing method using '#'
– ‑Xdump:system:events=throw,filter=java/lang/

NullPointerException#com/ibm/example/Example.bad

Event Description Filtering Example

gpf GPF (Crash) -Xdump:system:events=gpf

user User generated signal
(SIGQUIT or Ctrl-Break)

-Xdump:system:events=user

vmstop VM shutdown, including call to
System.exit()

exit code -Xdump:system:events=vmstop,filter=#0..#10

load Class load class name -Xdump:system:events=load,filter=com/ibm/example/Example

unload Class unload class name -Xdump:system:events=unload,filter=com/ibm/example/Example

throw An exception being thrown exception name -Xdump:system:events=throw,filter=java/net/ConnectException

catch An exception being caught exception name -Xdump:system:events=catch,filter=java/net/ConnectException

systhrow A Java exception is about to be
thrown by the JVM

exception name -Xdump:system:events=systhrow,
filter=java/lang/OutOfMemoryError,range=1..4

allocation A Java object is allocated size of object -Xdump:system:events=allocate,filter=#5m

© 2019 IBM CorporationPage 15

What caused an OutOfMemoryError

 Verbose garbage collection is critical and should be enabled on all production systems
(less than 1% overhead):

– https://www.ibm.com/developerworks/mydeveloperworks/blogs/troubleshootingjava/entry/verbose_gc_performance?lang=en

 An OutOfMemoryError may be caused by native heap exhaustion. That's outside the scope
of this presentation, but, at minimum, look for a reason message in the javacore/logs, and
see if the top frame of the current thread is in native code.

– MAT may still be very useful in the case of a native OOM.

 If the OOM is caused by a large object allocation, that allocation won't be in the heapdump!

https://www.ibm.com/developerworks/mydeveloperworks/blogs/troubleshootingjava/entry/verbose_gc_performance?lang=en

© 2019 IBM CorporationPage 16

Heapdump Theory

© 2019 IBM CorporationPage 17

Heapdump Theory

 The Java heap is a directed
graph of references (digraph)

– Each reference may have
primitives (integers, longs,
doubles, etc.) which can be seen
in Windows → Inspector and click
on an object

 Incoming references can be
thought of as “parents” and
outgoing references as “children”

– The reason these terms aren't
used is because a child can point
back to a parent, directly or
indirectly.

© 2019 IBM CorporationPage 18

Heapdump Theory

 Shallow heap is the size of an Object and its primitives.

 Retained heap is the shallow heap plus the retained heaps of lifetime-
dependent outgoing references.

 Object address may change if moved around by GC

 The dominator X of an object Y is the "root" object that retains Y

 The dominator tree is the heap split into mutually exclusive dominators

 A “GC Root” is an object which has a reference to it from outside the
Java heap.

– e.g. native threads, registers, JNI, stack objects (locals)
– http://wiki.eclipse.org/index.php/MemoryAnalyzer#Garbage_Collection_Roots

http://wiki.eclipse.org/index.php/MemoryAnalyzer#Garbage_Collection_Roots

© 2019 IBM CorporationPage 19

Retained Sets

 Retained set demonstration
– Top diagram: The green object (B)

"retains" the orange objects. The
orange objects are lifetime-dependent
on B.

– Bottom diagram: Introduce C which
references E. Now, B's retained
set/size has been reduced to D, G, K.
If B was Gced, E, H, L, M would only
be Gced if C was too.

© 2019 IBM CorporationPage 20

Retained Sets (Continued)

 Customized Retained Set
– You can create a customized retained set by class using Open Query Browser > Show

Retained Set OR Java Basics > Customized Retained Set. For example, if you want to
know how much total heap is consumed by some class X, then just pass that to the
query. The sum of shallow heaps is the amount held by the class.

– In the previous example, if you want to see the retained set of B if C didn't have that
reference to E, then you can use the exclude (-x) option to do this.

• This is useful if an object is "watching" another object and you know that B is the
"primary" object.

© 2019 IBM CorporationPage 21

Dominator Tree

 Transform object graph to identify the biggest
chunks of retained memory and the keep-alive
dependencies among objects.

 An object x dominates an object y if every path in
the object graph from the start (or the root) node to y
must go through x.

 The immediate dominator x of some object y is the
dominator closest to the object y.

 A dominator tree is built out of the object graph. In
the dominator tree each object is the immediate
dominator of its children, so dependencies between
the objects are easily identified.

 The objects belonging to the sub-tree of x (i.e. the
objects dominated by x) represent the retained set
of x.

 If x is the immediate dominator of y , then the
immediate dominator of x also dominates y , and so
on.

 The edges in the dominator tree do not directly
correspond to object references from the object
graph.



© 2019 IBM CorporationPage 22

Finding Objects

 Open Query Browser > List Objects > with incoming|
outgoing references

 Specify a class to get all instances, or a particular object
address

 The arrow decorator in a view will show whether
references are incoming or outgoing.

 If the name is prefixed with “class “ then that is the static
instance of that class (1 per classloader)

– In general, do not follow this down when navigating
outgoing references (unless it's very large in which case
there might be a static cache)

 “Show objects by class” lets you group references by
class.

– For example, from the histogram, if class X is the biggest,
right click and Show Objects by class → by incoming
references will show which objects (grouped by class)
reference instances of class X

 Watch out for loops! (Check the address)

© 2019 IBM CorporationPage 23

Tips & Tricks

© 2019 IBM CorporationPage 24

Background Information

 For Standalone MAT, set JVM parameters (e.g. -Xmx) in MemoryAnalyzer.ini
– For ISA max heap: http://www-01.ibm.com/support/docview.wss?uid=swg21403571

 For HPROF, thread Stacks are not available until Java 6 Update >= 14 and Java 7

 “Unreachable objects” are objects that are eligible for garbage collection
– In MAT, see a histogram of these by clicking “Unreachable Objects Histogram”

 Some reports can be exported as HTML using a button at the top (e.g. to send to
developers)

http://www-01.ibm.com/support/docview.wss?uid=swg21403571

© 2019 IBM CorporationPage 25

Background Information

 MAT writes “swap” files into the same directory as the heapdump so that it doesn't have to
load the whole heapdump

– There are limits to this and so you may still get OutOfMemoryErrors loading
heapdumps. If so, use 64 bit.

– These also make reloading a heapdump very fast. You can delete them but you will
lose the fast reload.

 The first row of a table result set allows filters
– Just type something in, it will automatically surround with .*

 Compare two dumps by loading both, clicking histogram on the newer one then clicking the
Compare button at the top right

© 2019 IBM CorporationPage 26

First Steps in MAT

 In the “Details” section, note “Size” which
is the size of the live Java heap at the time
of the heapdump.

– If it's not making sense (to verbosegc),
click Unreachable Objects Histogram
and note the Total in the “Shallow Heap”
column- this amount would be GCed if it
could.

• For example, a lot of garbage in
tenured and no Full GCs for a while.

 In the “Biggest Objects by Retained Size”
section, the pie chart represents the top
hitters from the Dominator Tree report.

– Left click on a pie portion and List
Objects → with outgoing references to
see objects held by the dominator.

© 2019 IBM CorporationPage 27

First Steps in MAT

 In the “Reports” section, click “Leak Suspects”

 In the “Actions” section:
– Click Histogram

• Gives you what is taking up the heap by class
– Click Dominator Tree

• Gives you what “large” objects are taking up the heap
– Click Top Consumers

• Scroll down to the “Biggest Top-Level Dominator Packages” section
• Gives you what is taking up the heap by package

 Open Query Browser > Leak Identification > Big Drops in Dominator Tree

© 2019 IBM CorporationPage 28

Top Consumers

 Groups the dominator tree by package

© 2019 IBM CorporationPage 29

Tips

There is no easy way to get the object's generation

When viewing a String, MAT doesn't show very large ones. Right
click → Copy → Save value to file

Strings are actually Java classes that have 1 outgoing reference
to a primitive array of chars

Table results have a useful Export button (e.g. CSV)

Running from a script (headless mode):
–java -Xmx3g -jar .../plugins/org.eclipse.equinox.launcher*.jar -

consoleLog -application org.eclipse.mat.api.parse mydump.dmp
org.eclipse.mat.api:suspects org.eclipse.mat.api:overview
org.eclipse.mat.api:top_components

© 2019 IBM CorporationPage 30

Sizing Applications

 No straightforward method because objects can be strewn throughout the heap (e.g.
sessions in the session manager, caches, etc.)

 Dominators by class loader with a system dump is a good start

 IEMA provides the WAS Overview which finds all application classloaders' usage

© 2019 IBM CorporationPage 31

Debugging with System Dumps

© 2019 IBM CorporationPage 32

Inspector

 Window > Inspector

 The object will change when you click on
something, or sometimes even if you just
hover over an object

© 2019 IBM CorporationPage 33

Thread Stacks and Frame Locals

 Java Basics > Thread Stacks and press
OK

 Expand a thread and expand a stack. Any
local object references on the frame will
show up!

© 2019 IBM CorporationPage 34

Object Query Language

© 2019 IBM CorporationPage 35

Object Query Language

 Object Query Language (OQL) button at the top
– Similar to SQL. Hit F1 for decent help and examples.

 Get an outgoing references tree of all instances of $CLASS (with an optional condition)
– SELECT * FROM INSTANCEOF <CLASS> WHERE …

• Use INSTANCEOF to include subclasses

 OQL is most useful with system dumps because you can reference the fields
– SELECT

 dbb,
 dbb.capacity,
 snapshot.getObject(inbounds(dbb)[0]),
 snapshot.getObject(inbounds(dbb)[1])
FROM INSTANCEOF java.nio.DirectByteBuffer dbb
WHERE
 (
 (dbb.viewedBuffer=null) AND
 (dbb.att=null)and(inbounds(dbb).length>1)
)

© 2019 IBM CorporationPage 36

OQL (Continued)

 The field reference can be nested. For example, let's say you have class X which has an
object reference (named obj) to class Y which has an integer field called size. Let's say you
want to find all instances of X with size greater than 10:

– SELECT * from com.package.X x where x.obj.size > 10
– This uses the concept of an alias, x, given to the class

 If you select a reference object, e.g.:
– SELECT x.obj from com.package.X x
– Then you need OBJECTS in front to get the normal view:
– SELECT OBJECTS x.obj from com.package.X x

© 2019 IBM CorporationPage 37

OQL (Continued)

 Displaying String contents using toString()
– SELECT toString(t.name) FROM INSTANCEOF java.lang.Thread t
– SELECT * FROM INSTANCEOF java.lang.Thread t WHERE (toString(t.name) =

"Thread-1")

 Displaying particular columns, including "built ins":
– SELECT t.@displayName, t.@retainedHeapSize AS "Retained Size" FROM

INSTANCEOF java.lang.Thread t WHERE (toString(t.name) = "Thread-1")

 Other Interesting Functions: dominators(), outbounds(), inbounds(), dominatorof()

© 2019 IBM CorporationPage 38

IBM Extensions for Memory
Analyzer

© 2019 IBM CorporationPage 39

Always On Extensions

 Top right:
MemoryStore object
shows how many
sessions and what
app

 Bottom right:
Classloader shown
by name/application

© 2019 IBM CorporationPage 40

Accessing the Queries

© 2019 IBM CorporationPage 41

Java Extensions

 Highlights
– DirectByteBuffers: Shows native memory held by DBBs and by whom
– Java Overview: Shows things like the command line arguments
– Export Object: Export a subset of the object graph as text to a file
– List All GC Roots and List All Objects: Mimics HeapAnalyzer functionality

© 2019 IBM CorporationPage 42

Java Overview

© 2019 IBM CorporationPage 43

DirectByteBuffers

© 2019 IBM CorporationPage 44

WAS Extensions

 Highlights
– WAS Overview: Shows WAS version, uptime, and experimental pie chart of what

components (e.g. applications, sessions, etc.) are taking up the heap
– Application ClassLoader Leaks: Find potential classloader leaks
– HTTP Sessions List: Show all HTTP sessions, size, timeout, attributes, etc.

© 2019 IBM CorporationPage 45

WAS Overview

© 2019 IBM CorporationPage 46

HTTP Session Analysis

© 2019 IBM CorporationPage 47

Thread Pool Analysis

© 2019 IBM CorporationPage 48

Web Application Analysis

© 2019 IBM CorporationPage 49

Interactive Diagnostic Data
Explorer

© 2019 IBM CorporationPage 50

IDDE

 IDDE is different from MAT in that it is not designed for heap graph analysis.

 This means that the IDDE load time, particularly in recent versions of IBM Java with direct
dump reading, are very fast.

 However, you do not get retained set analysis, etc.

 Also, some objects seen by IDDE may be garbage (MAT does a garbage collection on
start).

 IDDE only supports IBM dumps (not HPROF).

 Also support extensions, although different API than MAT.



© 2019 IBM CorporationPage 51

Extending Memory Analyzer

© 2019 IBM CorporationPage 52

Extension Points

 See http://wiki.eclipse.org/MemoryAnalyzer/Extending_Memory_Analyzer

 org.eclipse.mat.report.query
– This adds a menu item that executes your code and creates new tab(s) of output in any

form you want: Tree, Text, HTML, Pie Charts, etc.

 org.eclipse.mat.api.nameResolver
– Provide readable description of an object in some of MAT's view (like toString())

http://wiki.eclipse.org/MemoryAnalyzer/Extending_Memory_Analyzer

© 2019 IBM CorporationPage 53

API

 ISnapshot – Represents one dump
– Each object and class has a unique Integer ID. Most methods will return an int or array

of ints. Then you can call snapshot.getObject with the int to get an IObject representing
the item

– getGCRoots – List of all GC roots
– getClasses – List of all classes (or search by name)
– getInboundRefererIds – List of incoming references
– getOutboundReferentIds – List of outgoing references
– getHeapSize – Shallow heap size of the object
– getRetainedHeapSize – Retained heap size of the object

http://dev.eclipse.org/svnroot/tools/org.eclipse.mat/trunk/plugins/org.eclipse.mat.api/src/org/eclipse/mat/snapshot/ISnapshot.java
http://dev.eclipse.org/svnroot/tools/org.eclipse.mat/trunk/plugins/org.eclipse.mat.api/src/org/eclipse/mat/snapshot/model/IObject.java

© 2019 IBM CorporationPage 54

API

 IObject – represents an item in the heap
– getObjectAddress – This is the address of the object in the Java heap
– getClazz – Get the class of an object
– getUsedHeapSize/getRetainedHeapSize – Same as ISnapshot
– getDisplayName – The class, address, and name resolver
– resolveValue – For an IBM system dump or HPROF dump, given a name of a field, find

the object representing that field. This identifier can have periods which separate going
down that tree of items.

http://dev.eclipse.org/svnroot/tools/org.eclipse.mat/trunk/plugins/org.eclipse.mat.api/src/org/eclipse/mat/snapshot/model/IObject.java

© 2019 IBM CorporationPage 55

API

 IResult – What a query returns
– TextResult – Plain text or HTML content
– ObjectListResult – Grid of results with in/outbound refs
– SectionSpec – Separate results into sections

• Add QuerySpecs
– PieFactory...build() - Generate a pie chart
– ListResult – Table of items
– CompositeResult – Display results in separate tabs

© 2019 IBM CorporationPage 56

Query Extension

@Name("My Query") // This will be the menu item
@Category("IBM Extensions/WebSphere Application Server") // Subfolders
@Help("Short description\n\n")
public class MyQuery implements org.eclipse.mat.query.IQuery {
 @Argument
 public ISnapshot snapshot;

 public IResult execute(IProgressListener listener) throws Exception {
 String someResult = "# roots=" + snapshot.getGCRoots().length;
 return new TextResult(someResult, true);
 }
}

<plugin>
 <extension point="org.eclipse.mat.report.query">
 <query impl="MyQuery" />
 </extension>
</plugin>

© 2019 IBM CorporationPage 57

Name Resolver Extension

@Subject("com.example.MyClass") // Describes which application class
public class MyClassNameResolver { // Extension class for MAT
 public String resolve(IObject object) { // IObject represents object in dump
 IObject name = (IObject) object.resolveValue("nameField"); // Read field
 return name == null ? null : name.getClassSpecificName(); // printable
 }
}

<plugin>
 <extension point="org.eclipse.mat.api.nameResolver">
 <resolver impl="MyClassNameResolver" />
 </extension>
</plugin>

© 2019 IBM CorporationPage 58

Extending with Reports

<extension point="org.eclipse.mat.report.report">
 <report id="wasanalysis"
 name="My Report" description="Description" file="META-INF/reports/my
report.xml" />
</extension>

myreport.xml:

<section name="My Report" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns="http://www.eclipse.org/mat/report.xsd"
xsi:schemaLocation="http://www.eclipse.org/mat/report.xsd
../../../org.eclipse.mat.report/schema/report.xsd">

<param key="html.collapsed" value="false" />
<param key="filename_suffix" value="MyReport" />
<query name="My Report">
<command>my_query_name</command>
</query>

</section>

© 2019 IBM CorporationPage 59

Conclusion

 The Memory Analyzer Tool (MAT) is quite advanced, but attempts at automating or
simplifying heapdump analysis have generally failed. MAT balances the inherent
complexity of the Java object graph with a good UI, a powerful extensibility model, precise
calculations, a useful query language, and loads of other features.

 Core dump based debugging is an important future direction that middleware problem
determination is moving towards.

© 2019 IBM CorporationPage 60

Other Heapdump Tools

 HeapAnalyzer (HA) [ISA]
– http://www.alphaworks.ibm.com/tech/heapanalyzer
– User-friendly but inaccurate total size calculation and does not read system dumps

 Memory Dump Diagnostic for Java (MDD4J) [ISA]
– Deprecated

 Heap Analysis Tool (HAT)
– https://hat.dev.java.net/

 Other: HeapRoots, svcdump.jar, some profiler tools can analyze heapdumps

http://www.alphaworks.ibm.com/tech/heapanalyzer
https://hat.dev.java.net/

© 2019 IBM CorporationPage 61

Other Links

 Be careful when diagnosing Java memory leaks:
– https://www.ibm.com/developerworks/mydeveloperworks/blogs/kevgrig/entry/be_careful_when_diagnosing_java_memory_leaks17?lang=en

 How to use MAT to compare dumps:
– https://www.ibm.com/developerworks/mydeveloperworks/blogs/kevgrig/entry/how_to_use_the_memory_analyzer_tool_mat_to_compare_heapdumps_and_system_dumps20?lang=en

 IEMA in ISA:
– https://www.ibm.com/developerworks/mydeveloperworks/blogs/kevgrig/entry/the_ibm_extensions_for_memory_analyzer_are_now_available_through_the_ibm_support_assistant24?lang=en

https://www.ibm.com/developerworks/mydeveloperworks/blogs/kevgrig/entry/be_careful_when_diagnosing_java_memory_leaks17?lang=en
https://www.ibm.com/developerworks/mydeveloperworks/blogs/kevgrig/entry/how_to_use_the_memory_analyzer_tool_mat_to_compare_heapdumps_and_system_dumps20?lang=en
https://www.ibm.com/developerworks/mydeveloperworks/blogs/kevgrig/entry/the_ibm_extensions_for_memory_analyzer_are_now_available_through_the_ibm_support_assistant24?lang=en

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61

